纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 143-153.doi: 10.13475/j.fzxb.20240805801

• 纺织工程 • 上一篇    下一篇

基于虚拟纤维的纬编双轴向针织物模型构建及偏轴拉伸变形行为模拟

张欣1, 周康辉1, 姜茜1,2, 吴利伟1,2()   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
  • 收稿日期:2024-08-30 修回日期:2025-05-20 出版日期:2025-09-15 发布日期:2025-11-12
  • 通讯作者: 吴利伟(1984—),男,副教授。主要研究方向为高性能纤维及其复合材料。E-mail:wuliwei@tiangong.edu.cn
  • 作者简介:张欣(2000—),男,硕士生。主要研究方向为纤维增强复合材料。
  • 基金资助:
    天津市自然科学基金面上项目(23JCYBJC00740)

Model construction and deformation behavior of multilayer biaxial weft knitted fabrics based on virtual fiber model under off-axis tension

ZHANG Xin1, ZHOU Kanghui1, JIANG Qian1,2, WU Liwei1,2()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Tiangong University, Tianjin 300387, China
  • Received:2024-08-30 Revised:2025-05-20 Published:2025-09-15 Online:2025-11-12

摘要: 为更准确地模拟纬编双轴向针织物的面内变形行为,参考纬编双轴向针织物中纱线的空间位置,基于虚拟纤维的概念,利用三维建模软件构建纬编双轴向针织物的织物模型。通过收紧程序对织物模型进行预收紧处理,并与真实织物形态对比得到高精度的织物模型。然后,利用有限元方法研究其面内变形性能和力学行为。将模型的变形行为与真实织物的形貌、线圈倾斜角度及纱线截面变化进行对比分析。结果表明:36 根虚拟纤维组成的捆绑纱织物模型在20%的收紧程度下,线圈轨迹与真实织物相关性系数接近 0.9,能有效反映真实织物形貌;偏轴拉伸模拟结果表明,织物模型与真实织物不同阶段单个线圈倾斜角度相差不超过4°;另外利用虚拟纤维构建的织物模型可以反映纱线的截面变形情况。以此验证了该模型可以有效模拟纬编双轴向针织物的面内变形行为。

关键词: 虚拟纤维, 纬编双轴向针织物, 偏轴拉伸, 数值模拟, 变形行为

Abstract:

Objective The multilayer biaxial weft knitted fabric is a specially structured textile characterized by parallel-aligned straight yarns (axial yarns) in both warp and weft directions, which are bound and fixed by knitted loop structures to form a three-dimensional knitted fabric. By employing high-performance yarns as axial yarns in both directions, this structure achieves enhanced stability and directional properties, making it particularly suitable for applications such as composite reinforcements, industrial textiles, and protective clothing. This study investigates the in-plane deformation characteristics and mechanical behavior of the multilayer biaxial weft knitted fabric using finite element methods, based on its unique structural features.

Method In finite element simulation, the advantages of the virtual fiber model over the physical model lie in its ability to establish a high-precision model that is more consistent with real fabrics, and to show the tightness and interlacing deformation characteristics of real fabrics. Therefore, with reference to the spatial positions of knitting loops and axial yarns in the multilayer biaxial weft knitted fabric, a theoretical geometric model was first constructed. Through a pre-tightening program, preprocessing was performed on the theoretical geometric model to achieve the tight state of knitting loops against axial yarns in real fabrics, and regression equations were adopted to ensure the geometric consistency between the fabric model and the real fabric. Subsequently, off-axis tension simulation was carried out on the above-mentioned high-precision model, and the deformation behavior of the model was compared and analyzed with the morphology, loop inclination angle, and yarn cross-sectional deformation of the real fabric, aiming at more accurately simulating the in-plane deformation of real fabrics.

Results The entire fabric model is built by adopting the virtual fiber method including two sets of yarn systems. A pre-tightening processing is implemented on the fabric models containing 10, 18 and 36 bundled yarns, respectively. By considering the correlation between the simulated and real coil path and comparing it with the morphology of the real fabric, it is concluded that when the tightening degree is 20%, the fabric model with 36 bundled yarns is consistent to the real fabric. After calculating the correlation coefficient, it is found that the correlation coefficient between the simulated and real bundled yarn coil trajectories approaches 0.9.The numerical simulation of off-axis tension is conducted on the fabric model that most closely approximates the real effect. Simultaneously, it is compared with the morphology of the real fabric after tigntening. As a result, it can be verified that the approach of constructing a fabric model can effectively represent the performance of the real fabric. By comparing the overall deformation as well as the deformation at different stages, it is discovered that the deformation behavior of the fabric model is similar to that of the real fabric, with the difference in the coil inclination angles between the two at different stages within 4°. Through analyzing the cross-sectional deformation situations of individual bundled yarn coils and axial yarns, it is found that the region with the largest deformation of the coil is located where the coils are interlaced and intertwined with each other. This deformation behavior is transmitted to the coil pillars and coil loops, which is in line with the analysis of the stress situation of the coils in the knitted fabric coil structure. The cross-sectional deformation degree of the coil pillars is greater than that of the coil loops. Under a 20% tightening degree, the ratio of the short axis to the long axis is lower than 0.6. The axial yarns transform from a rectangular cross-section to a runway shape and an elliptical shape.

Conclusion The method of constructing virtual fiber models can effectively simulate the deformation behavior of real fabrics when bearing loads. By determining a certain quantity of virtual fiber, it is possible to approach more closely to the pre-tightening state of the fabric under actual conditions and the morphological changes after tightening. The fabric model can also reflect the squeezing deformation of the internal fibers within the yarns when under stress. This fully validates the effectiveness and feasibility of the multilayer biaxial weft knitted fabric model. This method also provides new ideas for model construction of other fabric structures.

Key words: virtual fiber, biaxial weft knitted fabric, off-axis tension, numerical simulation, deformation behavior

中图分类号: 

  • TB332

图1

纬编双轴向针织物的结构示意图"

表1

织物参数"

纱线
类型
线密度 经纬密/
(根·(10 cm)-1)
纱线间距/
mm
厚度/
mm
经纱 150.0tex×7 55 2.5 2
纬纱 150.0tex×4 51 2.3 1
捆绑纱 17.5tex×1

图2

捆绑纱线结构示意图"

图3

轴向纱模型"

图4

预收紧示意图"

图5

织物模型偏轴拉伸示意图"

图6

捆绑纱线圈实物图与模拟图"

图7

收紧程度20%下不同根数的线圈轮廓"

图8

36根时不同收紧程度的线圈轮廓"

图9

不同视角下线圈模型收紧前后与真实纱线路径对比"

图10

收紧后织物轴向纱实物与模拟图对比"

图11

轴向纱变形效果图"

图12

实体模型与虚拟纤维模型对比"

图13

织物拉伸后形貌图"

图14

模型与真实织物受拉中心区域变形比较以及线圈倾斜程度的对比"

图15

纱线横截面模拟结果"

[1] STEPAN V Lomov, MAARTEN Moesen, RUDY Stalmans, et al. Finite element modelling of SMA textiles: superelastic behaviour[J]. The Journal of the Textile Institute, Part 3. Technologies for a New Century, 2011, 102(3):232-247.
[2] 陈利, 焦伟, 王心淼, 等. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8):62-72.
doi: 10.11868/j.issn.1001-4381.2020.000210
CHEN Li, JIAO Wei, WANG Xinmiao, et al. Research progress on mechanical properties of three-dimensional woven composites[J]. Journal of Materials Engineering. 2020, 48(8):62-72.
doi: 10.11868/j.issn.1001-4381.2020.000210
[3] LIU D, CHRISTE D, SHAKIBAJAHROMI B, et al. Onthe role of material architecture in the mechanical behavior of knitted textiles[J]. International Journal of Solids & Structures, 2017, 109:101-111.
[4] YANG Z, JIAO Y, XIE J, et al. Modeling of 3D woven fibre structures by numerical simulation of the weaving process[J]. Composites Science and Technology, 2021, 206(8):108679.
doi: 10.1016/j.compscitech.2021.108679
[5] 常辰玉, 王雨薇, 原旭阳, 等. 基于交织点改进弹簧-质点模型的纬编针织物动态变形模拟[J]. 纺织学报, 2024, 45(1):99-105.
CHANG Chenyu, WANG Yuwei, YUAN Xuyang, et al. Dynamic deformation simulation of weft-knitted fabrics based onimproved spring-mass model at interlacing points[J]. Journal of Textile Research, 2024, 45(1):99-105.
[6] 曹竞哲, 陶晨, 白琳琳. 基于变形网格的织物悬垂形态模拟[J]. 纺织学报, 2024, 45(6):59-67.
CAO Jingzhe, TAO Chen, BAI Linlin. Simulation of fabric drapemorphology based on deformed grids[J]. Journal of Textile Research, 2024, 45(6):59-67.
[7] 王青弘, 王迎, 郝新敏, 等. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(6):144-151.
WANG Qinghong, WANG Ying, HAO Xinmin, et al. Optimization of preparation process of electrostatically spun polyamide nanofiber composite fabric[J]. Journal of Textile Research, 2023, 44(6):144-151.
[8] 熊莹, 缪旭红, 蒋高明, 等. 经编起绒织物的计算机仿真[J]. 纺织学报, 2015, 36(7):147-151.
XIONG Ying, MIAO Xuhong, IANG Gaoming, et al. Computer simulation of warp-knitted pile fabric[J]. Journal of Textile Research, 2015, 36(7):147-151.
[9] 杨文权, 蒋金华, 陈南梁. 玻璃纤维织物在剪切变形作用下的渗透率[J]. 纺织学报, 2018, 39(8):58-62.
YANG Wenquan, JIANG Jinhua, CHEN Nanliang. Permeability of glass fiber fabrics under shear deformartion[J]. Journal of Textile Research, 2018, 39(8):58-62.
[10] WANG Y, SUN X. Digital-element simulation of textile processes[J]. Composites Science and Technology, 2001, 61(2):311-319.
doi: 10.1016/S0266-3538(00)00223-2
[11] JUNBO X, CHEN X, ZHANG Y, et al. Experimental and numerical investigation of the needling processfor quartz fibers[J]. Composites Science and Technology, 2018, 165: 115-123.
doi: 10.1016/j.compscitech.2018.06.009
[12] LIU C, XIE J, SUN Y, et al. Micro-scale modeling of textile composites based on the virtual fiber embedded models[J]. Composite Structures, 2024, 230:111552-111552.
doi: 10.1016/j.compstruct.2019.111552
[13] 朱琬清, 谢军波, 吴兰芳, 等. 3D机织预制体准纤维尺度建模方法[J]. 复合材料学报, 2024, 41(3):1528-1538.
ZHU W, XIE J, WU L, et al. Quasi-fiber scale modeling method of 3D woven preforms[J]. Acta Materiae Compositae Sinica. 2024, 41(3):1528-1538.
[14] XIE J, CHEN X, ZHANG Y, et al. Experimental and numerical investigation of the needling process for quartz fibers[J]. Composites Science and Technology, 2018, 165:115-123.
doi: 10.1016/j.compscitech.2018.06.009
[15] DURVILLE D. Simulation of the mechanical behaviour of woven fabrics at the scale of fibers[J]. International Journal of Material Forming, 2010, 3(2):1241-1251.
doi: 10.1007/s12289-009-0674-7
[16] DAELEMANS L, TOMME B, CAGLARr B, et al. Kinematic and mechanical response of dry woven fabrics in through-thickness compression: virtual fiber modeling with mesh overlay technique and experimental valid-ation[J]. Composites Science and Technology, 2021, 207:108706.
doi: 10.1016/j.compscitech.2021.108706
[17] MAHADIK Y, HALLETT S R. Finite element modelling of tow geometry in 3D woven fabrics[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(9):1192-1200.
doi: 10.1016/j.compositesa.2010.05.001
[18] 左祺, 吴华伟, 王春红, 等. 纱线结构对苎麻短纤纱复合材料拉伸性能的影响[J]. 纺织学报, 2023, 44(10):81-89.
doi: 10.13475/j.fzxb.20220804801
ZUO Qi, WU Huawei, WANG Chunhong, et al. Influence of yarn structure on the tensile properties of ramie staple yarn composites[J]. Journal of Textile Research, 2023, 44(10):81-89.
doi: 10.13475/j.fzxb.20220804801
[19] WU L, ZHAO F, XIE J, et al. The deformation behaviors and mechanism of weft knitted fabric based on micro-scale virtual fiber model[J]. International Journal of Mechanical Sciences, 2020, 187(19):105929.
doi: 10.1016/j.ijmecsci.2020.105929
[20] 朱生群, 袁嫣红, 李跃珍. 基于TexGen的筒状纬编针织物的三维仿真[J]. 现代纺织技术, 2019, 27(6):57-61.
ZHU Shengqun, YUAN Yanhong, LI Yuezhen. Three-dimensional simulation of cylindrical weft-knitted fabrics based on TexGen[J]. Modern Textile Technology, 2019, 27(6):57-61.
[21] 吴周镜, 宋晖, 李柏岩, 等. 纬编针织物在计算机中的三维仿真[J]. 东华大学学报(自然科学版), 2011, 37(2):210-214.
WU Zhoujing, SONG Hui, LI Boyan, et al. 3D simulation of weft knitted fabrics in computers[J]. Journal of Donghua University (Natural Science Edition), 2011, 37(2): 210-241.
[22] DINH T D, WEEGER O, KAIJIMA S, et al. Prediction of mechanical properties of knitted fabrics under tensile and shear loading: mesoscale analysis using representative unit cells and its validation[J]. Composites Part B: Engineering, 2018, 148:81-92.
doi: 10.1016/j.compositesb.2018.04.052
[23] VASSILIADIS S G, KALLIVRETAKI A E, PROVATIDIS C G. Mechanical simulation of the plain weft knitted fabrics[J]. International Journal of Clothing Science& Technology, 2007, 19(2):109-130.
[24] BAI R, COLLMARS J, NAOUAR N, et al. A specific 3D shell approach for textile composite reinforcementsunder large deformation[J]. Composites Part A: Applied Science and Manufacturing, 2020, 139:106135.
doi: 10.1016/j.compositesa.2020.106135
[25] XU J, ZHANG Y, ZHANG Y, et al. Meso-FE modelling for homogenization of the nonlinear orthotropic behavior of PTFE-coated fabric based on virtual fiber method[J]. Composite Structures, 2024, 338(15): 118093.
doi: 10.1016/j.compstruct.2024.118093
[26] WANG J, FANG J, WANG J, et al. Quasi-fiber scale modeling of 3D needled composites based on the virtuafiber embedded method[J]. Materials & Design, 2024, 243:113085.
[27] WEI Q, ZHANG D. A textile architecture-based discrete modeling approach to simulating fabric draping processes[J]. Journal of Industrial Textiles, 2023, 243:113085.
[28] KUANG Y, LI J, WANG W, et al. Off-axis compression behavior and failure mechanisms of needled carbon/quartz fiber reinforced phenolic resin composite based on acoustic emission[J]. Polymer Composites, 2024, 45(9):8147-8162.
doi: 10.1002/pc.v45.9
[29] YAO T, CHEN X, LI J, et al. Experimental and numerical study of interlaminar shear property and failure mechanism of none-felt needled composites[J]. Composite Structures, 2022, 290:115507.
doi: 10.1016/j.compstruct.2022.115507
[1] 张定眺, 王倩茹, 邱芳, 李凤艳. 改进转杯纺输纤通道气流场及其纤维伸直形态的模拟[J]. 纺织学报, 2025, 46(02): 100-105.
[2] 李玲, 史倩倩, 田顺, 汪军. 输纤通道对称性对双喂入双分梳转杯纺气流场以及纱线特性的影响[J]. 纺织学报, 2025, 46(02): 69-77.
[3] 宋凯莉, 郭明瑞, 高卫东. 装有气流导向装置的网格圈式集聚纺数值模拟与实验验证[J]. 纺织学报, 2025, 46(01): 34-41.
[4] 李慧敏, 刘淑强, 杜琳琳, 张曼, 吴改红. 玄武岩/聚酰亚胺三维间隔机织物的参数化建模及高温环境传热数值模拟[J]. 纺织学报, 2025, 46(01): 87-94.
[5] 王珏, 晏石林, 李永静, 何龙飞, 谢翔宇, 孟晓旭. 剪切变形对各向异性织物主渗透率及浸润特性的影响[J]. 纺织学报, 2024, 45(12): 109-117.
[6] 奚传智, 王家源, 王泳智, 陈革, 裴泽光. 低能耗喷气涡流纺喷嘴气流场数值模拟与纺纱实验[J]. 纺织学报, 2024, 45(12): 206-214.
[7] 张定眺, 王倩茹, 邱芳, 李凤艳. 转杯纺分梳排杂区气流场的多维数值模拟对比[J]. 纺织学报, 2024, 45(10): 64-71.
[8] 田少萌, 张丽, 石浩轩, 徐阳. 基于ANSYS Workbench的高密机织滤料动态形变模拟与分析[J]. 纺织学报, 2024, 45(09): 63-69.
[9] 张琦, 左露娇, 屠佳妮, 聂美婷. 经编贾卡鞋面材料透气性的数值模拟[J]. 纺织学报, 2024, 45(09): 78-83.
[10] 岳旭, 王蕾, 孙丰鑫, 潘如如, 高卫东. 基于ABAQUS的平纹织物同面对向弯曲有限元模拟[J]. 纺织学报, 2024, 45(08): 165-172.
[11] 谢红, 张林蔚, 沈云萍. 基于人体臂部的连续动态服装压力预测模型及准确性表征方法[J]. 纺织学报, 2024, 45(07): 150-158.
[12] 刘倩倩, 尤健明, 王琰, 孙成磊, 祝国成. 纤维弯曲对其集合体过滤特性影响的稳态数值分析[J]. 纺织学报, 2024, 45(07): 31-39.
[13] 韩烨, 田苗, 蒋青昀, 苏云, 李俊. 织物-空气层-皮肤三维结构建模及其传热模拟[J]. 纺织学报, 2024, 45(02): 198-205.
[14] 王青, 梁高翔, 殷俊清, 盛晓超, 吕绪山, 党帅. 新型气流牵伸通道结构模型的构建与性能分析[J]. 纺织学报, 2023, 44(11): 52-60.
[15] 杨孟想, 刘让同, 李亮, 刘淑萍, 李淑静. 机织物的热传递与强热条件下热防护性能[J]. 纺织学报, 2023, 44(11): 74-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!