纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 197-204.doi: 10.13475/j.fzxb.20250200101

• 染整工程 • 上一篇    下一篇

基于铝镁合金阳极的靛蓝染色废水电絮凝处理效能优化

左卓帆1,2,3, 卢凯亮1,2,3, 李倩雯1,2,3, 张维1,2,3()   

  1. 1.河北科技大学 纺织服装学院, 河北 石家庄 050018
    2.纺织行业电化学技术应用重点实验室, 河北 石家庄 050018
    3.河北省纺织服装技术创新中心, 河北 石家庄 050018
  • 收稿日期:2025-02-05 修回日期:2025-06-25 出版日期:2025-09-15 发布日期:2025-11-12
  • 通讯作者: 张维(1984—),女,副教授,博士。主要研究方向为纺织品清洁生产及功能化加工技术。E-mail:weizhang2999@163.com
  • 作者简介:左卓帆(2001—),女,硕士生。主要研究方向为靛蓝染色废水电化学处理技术与资源回用。
  • 基金资助:
    河北省自然科学基金项目(B2022208014);石家庄市驻冀高校基础研究项目(241790757A)

Optimization of treatment efficiency of indigo dyeing wastewater by electrocoagulation using Al-Mg alloy anodes

ZUO Zhuofan1,2,3, LU Kailiang1,2,3, LI Qianwen1,2,3, ZHANG Wei1,2,3()   

  1. 1. College of Textile and Garment, Hebei University of Science & Technology, Shijiazhuang, Hebei 050018, China
    2. Key Laboratory of Electrochemical Technology Application in Textile Industry, Shijiazhuang, Hebei 050018, China
    3. Hebei Technology Innovation Center for Textile and Garment, Shijiazhuang, Hebei 050018, China
  • Received:2025-02-05 Revised:2025-06-25 Published:2025-09-15 Online:2025-11-12

摘要: 为探究镁元素掺杂对铝电极溶解速率及电絮凝性能的影响,选取不同掺杂量的铝镁合金为阳极,与石墨阴极构建靛蓝染色废水电絮凝体系。综合利用极化曲线、开路电位、热红外成像与能量色散X射线光谱等手段,分析铝及铝镁合金电化学性能、微观形貌、表面物质及元素分布。结果表明:经5A06和5052铝镁合金电极电絮凝后的废水,总有机碳(TOC)去除率和色度分别为49%、50倍和48%、50倍,均优于纯铝电极,且5A06阳极体系的化学需氧量(COD)去除率为74.67%,高于纯铝阳极体系的72.56%;5A06电极电絮凝后未出现钝化区间,且开路电位负移,电极活性增强,溶解速率增大;红外热成像图显示钝化层优先在阳极边缘形成,铝电极红色区域面积明显高于铝镁合金电极;铝电极腐蚀坑洞中存在大量Al2O3颗粒,结合元素含量变化证实铝镁合金电极表面氧化物含量低于铝电极,进一步揭示镁元素掺杂抑制了合金电极的钝化进程。

关键词: 电絮凝, 靛蓝染色废水, 废水处理, 铝镁合金电极, 絮凝效率, 电极活化, 电极钝化, 极化曲线

Abstract:

Objective The passivation of Al anodes during electroflocculation reduces the dissolution rate and current efficiency, negatively impacting flocculation yield, contaminant removal efficiency, and increasing energy consumption. In order to solve the above problems, Al-Mg alloy electrodes with varying Mg content were selected as anodes, and the electroflocculation system for indigo dyeing wastewater was constructed together with graphite cathode. The wastewater treatment efficiency of Al-Mg alloy anode and the Mg doping on the inhibition of anode passivation were investigated to understand the activation mechanism of Al-Mg alloy electrode by Mg element, providing a new path and theoretical basis for the performance and effect optimization of the electroflocculation system for indigo dyeing wastewater.

Method Al and four types of Al-Mg alloy electrodes with different Mg contents, namely 5052 (Mg 2.2%-2.8%), 5A03 (Mg 3.2%-3.8%), 5083 (Mg 4.0%-4.9%), 5A06 (Mg 5.8%-6.8%), were selected as anode. The performance of alloy electrode on chemical oxygen demand (COD), total organic carbon (TOC) removal and energy consumption was analyzed. The influence of Mg doping on the dissolution and passivation of the alloy anode during the electroflocculation process was investigated with EDS energy spectroscopy, thermal infrared imaging, open circuit potential and polarisation curve tests.

Results Under the same electroflocculation operating parameters i.e.,applied voltage of 10 V, electrolytic time of 20 min and plate space of 3 cm, the electroflocculation treatment results showed that Al-Mg alloy 5A03 and 5083 did not have significant performance on COD removal rate, chromaticity and flocculation yield. Therefore, Al, 5052 and 5A06 were selected for the experimental verification and characterization analysis of Mg doping, which is conducive to improving electrode activity and electroflocculation effect. Within the same operational conditions, the loss rate of the Al-Mg 5052 was lower than that of Al and 5A06. After electroflocculation with 5A06 and 5052 anodes, the TOC removal rate was 49% and 48%, respectively, and the chromaticity was 50 times for both cases, which were both better than pure Al. In addition, the COD removal rate with 5A06 anode was higher than the electroflocculation system of pure Al anode. After the electroflocculation process, the corrosion potentials for Al, 5052, and 5A06 electrodes shifted positively. The polarization curves of the Al electrode showed current plateau due to the inhibition of metal ion dissolution by passivation. However, it was not detected in that of Al-Mg alloy electrodes. Following treatment, the Al anode surface showed a decrease in Al content and an increase in O content, alongside the presence of Al2O3 spherical particles in the electrode's dissolved pits, with Al2O3 content exceeding that of the Al-Mg alloy surface.

Conclusion The wastewater after electroflocculation using Al-Mg alloy 5A06 and 5052 achieved effectively improved TOC removal rate and chromaticity compared to the pure Al anode electroflocculation system. Notably, the COD removal efficiency with the 5A06 anode exceeded that of pure Al. The polarization curve of the Al-Mg alloys electrode after electrocoagulation showed no current plateau, and the open-circuit potential was negatively shifted. The performance is attributed to the addition of Mg, which increases the electrode dissolution rate and inhibits passivation. Thermal infrared imaging revealed more pronounced passivation at the electrode plate edges compared to the center, with the passivation area of the Al electrode being significantly greater than that of the Al-Mg alloy electrode. In conclusion, the electroflocculation system constructed with 5A06 as the anode improved the treatment effect of indigo dyeing wastewater to a certain extent and effectively inhibited the passivation process of the electrode.

Key words: electrocoagulation, indigo dyeing wastewater, wastewater treatment, alumium-magesium alloy electrode, flocculation efficiency, electrode activation, electrode passivation, polarization curve

中图分类号: 

  • X791

表1

电解时间对铝电极电絮凝废水处理效果影响"

电解
时间/min
电极
损耗率/%
COD
去除率/%
色度 絮凝
物质量/g
15 0.873 64.80 70 0.105 0
20 1.261 67.14 60 0.239 6
25 1.503 69.18 60 0.290 0
30 1.693 71.42 60 0.343 4

表2

铝及铝镁电极对靛蓝废水的处理效果"

电极
材料
COD
去除
率/%
色度 COD去除比能耗/
(kW·h·
(g COD)-1)
絮凝
物质量/g
电极
损耗率/%
Al 72.56 60 0.012 7 0.186 1 1.025
5052 70.27 50 0.013 5 0.285 4 0.778
5A03 69.69 60 0.013 9 0.209 7 1.370
5083 69.92 60 0.014 2 0.198 5 1.095
5A06 74.67 50 0.013 6 0.237 0 1.460

图1

电极表面形貌图"

图2

不同电极体系形成絮体的SEM照片"

表3

不同电极体系形成絮体的孔结构参数"

电极
材料
比表面积/
(m2·g-1)
孔体积/
(cm3·g-1)
平均
孔径/nm
84.589 4 0.246 745 17.550 4
5052 72.739 3 0.225 419 17.439 1
5A06 70.334 4 0.192 861 16.630 9

图3

不同电极体系形成絮体的氮气等温吸/脱附曲线"

图4

铝及铝镁合金电极开路电位图"

图5

铝及铝镁合金电极的极化曲线 注:J代表电流密度。"

图6

铝及铝镁合金红外成像图"

图7

铝电极表面EDS图"

图8

5052电极表面EDS图"

图9

5A06电极表面EDS图"

[1] 吕伟伟, 姚继明, 张维. 电极材料对双池电化学降解靛蓝废水的影响[J]. 印染, 2019, 45(5): 8-14.
LV Weiwei, YAO Jiming, ZHANG Wei. Effect of different electrode materials on electrochemical degradation of indigo wastewater in double cell[J]. China Dyeing & Finishing, 2019, 45(5): 8-14.
[2] ZHANG W, YAO J M, MU Y G, et al. Electroflocculation of indigo dyeing wastewater from industrial production: flocs growth and adsorption mechanism[J]. Arabian Journal of Chemistry, 2023, 16(12): 105335.
doi: 10.1016/j.arabjc.2023.105335
[3] ZHANG W, ZHANG M D, YAO J M, et al. Industrial indigo dyeing wastewater purification: effective COD removal with peroxide-AC electrocoagulation system[J]. Arabian Journal of Chemistry, 2023, 16(4): 104607.
doi: 10.1016/j.arabjc.2023.104607
[4] LV H M, YANG S, LI C, et al. Suppressing passivation layer of Al anode in aqueous electrolytes by complexation of H2PO4 to Al3+ and an electrochromic Al ion battery[J]. Energy Storage Materials, 2021, 39: 412-418.
doi: 10.1016/j.ensm.2021.04.044
[5] SANEI E, MOKHTARANI N. Leachate post-treatment by electrocoagulation process: effect of polarity switching and anode-to-cathode surface area[J]. Journal of Environmental Management, 2022, 319: 115733.
doi: 10.1016/j.jenvman.2022.115733
[6] 田家宇, 霍佳文, 胡承志, 等. 电絮凝处理腐殖酸过程中阳极钝化影响因素分析[J]. 环境工程学报, 2022, 16(6): 1789-1796.
TIAN Jiayu, HUO Jiawen, HU Chengzhi, et al. Influence factors of anode passivation during humic acid electrocoagulation treatment[J]. Chinese Journal of Environmental Engineering, 2022, 16(6): 1789-1796.
[7] YU Y, ZHONG Y W, SUN W L, et al. A novel electrocoagulation process with centrifugal electrodes for wastewater treatment: electrochemical behavior of anode and kinetics of heavy metal removal[J]. Chemosphere, 2023, 310: 136862.
doi: 10.1016/j.chemosphere.2022.136862
[8] FERDIAN D, PRATESA Y, TOGINA I, et al. Development of Al-Zn-Cu alloy for low voltage aluminum sacrificial anode[J]. Procedia Engineering, 2017, 184: 418-422.
doi: 10.1016/j.proeng.2017.04.112
[16] SUN J Q, HUO J W, LI B W, et al. Anode passivation mitigation by homogenizing current density distribution in electrocoagulation[J]. Water Research, 2022, 223: 118966.
doi: 10.1016/j.watres.2022.118966
[17] GAO J X, FAN H F, WANG E D, et al. Exploring the effect of magnesium content on the electrochemical performance of aluminum anodes in alkaline batte-ries[J]. Electrochimica Acta, 2020, 353: 136497.
doi: 10.1016/j.electacta.2020.136497
[9] LINJEE S, MOONNGAM S, KLOMJIT P, et al. Corrosion behaviour improvement from the ultrafine-grained Al-Zn-In alloys in Al-air battery[J]. Energy Reports, 2022, 8: 5117-5128.
doi: 10.1016/j.egyr.2022.03.132
[10] DURA A, BRESLIN C B. Electrocoagulation using aluminium anodes activated with Mg, in and Zn alloying elements[J]. Journal of Hazardous Materials, 2019, 366: 39-45.
doi: S0304-3894(18)31123-3 pmid: 30502571
[11] 彭晶晶, 刘静, 张弦, 等. 合金元素在Al基牺牲阳极中的作用机理[J]. 材料导报, 2022, 36(17): 141-148.
PENG Jingjing, LIU Jing, ZHANG Xian, et al. Activation mechanisms of alloy elements on aluminum-based sacrificial anodes[J]. Materials Reports, 2022, 36(17): 141-148.
[12] 张梦迪, 张维, 姚继明. 天然黏土矿物在靛蓝染色废水电絮凝中的应用[J]. 纺织学报, 2022, 43(2): 196-201.
ZHANG Mengdi, ZHANG Wei, YAO Jiming. Application of natural clay minerals in electrocoagulation of indigo dyeing wastewater[J]. Journal of Textile Research, 2022, 43(2): 196-201.
[13] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distri-bution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069.
doi: 10.1515/pac-2014-1117
[14] 文九巴, 梁明岗, 贺俊光, 等. Mg与In合金化对Al-Ga-Mn阳极合金组织和性能影响[J]. 材料热处理学报, 2016, 37(3): 41-47.
WEN Jiuba, LIANG Minggang, HE Junguang, et al. Effect of Mg and in on microstructure and electrochemical performances of Al-Ga-Mn alloys[J]. Transactions of Materials and Heat Treatment, 2016, 37(3): 41-47.
[15] 张丽华. Cu元素对Al-Si合金的力学性能及耐腐蚀性的影响[J]. 陶瓷, 2020(4): 36-44.
ZHANG Lihua Effect of Cu on mechanical properties and corrosion resistance of Al-Si alloys[J]. Ceramics, 2020(4): 36-44.
[1] 王泓力, 张辉, 刘建宇, 尉海泽, 张雅宁, 王丽丽, 许学潮. 棉基生物炭-ZIF-L(Zn)-壳聚糖/聚丙烯复合膜的制备及其吸附-光催化性能[J]. 纺织学报, 2025, 46(09): 84-93.
[2] 项文龙, 杨静冉, 肖晓珍. 铁钴双金属有机框架/稻谷壳复合材料的制备及其染料脱色性能[J]. 纺织学报, 2025, 46(06): 178-186.
[3] 王薇, 高建南, 裴笑涵, 陆鑫, 孙银银, 吴建兵. 纤维素/甲基三甲氧基硅烷气凝胶的制备及其油水分离效能[J]. 纺织学报, 2025, 46(05): 135-142.
[4] 金汝诗, 陈万明, 刘国金, 刘承海, 戚栋明, 翟世民. 生物炭在印染废水处理中的应用研究进展[J]. 纺织学报, 2025, 46(04): 235-243.
[5] 李逢春, 孙辉, 于斌, 谢有秀, 张德伟. 共价有机框架材料/粘胶水刺非织造布的制备及其染料吸附性能[J]. 纺织学报, 2025, 46(02): 170-179.
[6] 杨亮, 孔韩韩, 李韦霖, 祁小芬, 张天芸, 王雪梅, 李文全. 沸石咪唑酯骨架-8的制备及其对刚果红的吸附性能[J]. 纺织学报, 2024, 45(07): 140-149.
[7] 武守营, 黄启超, 张开封, 张琳萍, 钟毅, 徐红, 毛志平. 铁-三联吡啶配合物活化高碘酸盐体系构建及其对染色废水的催化降解机制[J]. 纺织学报, 2024, 45(06): 105-112.
[8] 冯颖, 于汉哲, 张宏, 李可心, 马标, 董鑫, 张建伟. 静电纺壳聚糖基纳米纤维的制备及其在水处理中应用研究进展[J]. 纺织学报, 2024, 45(05): 218-227.
[9] 郑康, 龚文丽, 鲍杰, 刘琳. 两性纤维素多孔凝胶球的制备及其动态吸附性能[J]. 纺织学报, 2024, 45(05): 102-112.
[10] 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75.
[11] 李方, 张怡立, 王曼, 孟祥周, 沈忱思. 锑污染物对绿藻及蓝藻的急性毒性效应[J]. 纺织学报, 2024, 45(04): 169-179.
[12] 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(03): 137-147.
[13] 李红颖, 徐毅, 杨帆, 任瑞鹏, 周全, 吴丽杰, 吕永康. 三维乒乓菊状CdS/BiOBr催化剂的制备及其光催化降解罗丹明B[J]. 纺织学报, 2023, 44(09): 124-133.
[14] 韩博, 王玉霖, 舒大武, 王涛, 安芳芳, 单巨川. 活性染料染色废水的循环染色[J]. 纺织学报, 2023, 44(08): 151-157.
[15] 王国琴, 付小航, 朱羽科, 吴礼光, 王挺, 蒋孝佳, 陈华丽. 可见光响应的介孔TiO2光降解罗丹明B机制及其降解途径[J]. 纺织学报, 2023, 44(05): 155-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!