纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 268-277.doi: 10.13475/j.fzxb.20241103902

• 综合述评 • 上一篇    下一篇

个体降温服装技术研究进展

朱元成1,2(), 何永红1, 熊伟国2   

  1. 1.清华大学深圳国际研究生院, 广东 深圳 518055
    2.深圳市酷凌时代科技有限公司, 广东 深圳 518106
  • 收稿日期:2024-11-18 修回日期:2025-04-23 出版日期:2025-09-15 发布日期:2025-11-12
  • 作者简介:朱元成(1987—),男,学士。主要研究方向为制冷、精密温控、个体降温服装。E-mail:zyc@coolingstyle.com

Research progress in personal cooling garment technologies

ZHU Yuancheng1,2(), HE Yonghong1, XIONG Weiguo2   

  1. 1. Tsinghua Shenzhen International Graduate School, Shenzhen, Guangdong 518055, China
    2. Shenzhen Coolingstyle Technology Co., Ltd., Shenzhen, Guangdong 518106, China
  • Received:2024-11-18 Revised:2025-04-23 Published:2025-09-15 Online:2025-11-12

摘要:

高温作业环境下的热应激威胁作业人员健康与安全,个体降温服装(PCG)技术是维持热平衡、提升热舒适性的有效手段。为系统分析PCG技术进展,探索轻量化、高能效的个体降温方案,采用文献综述与性能对比的方法,分析了气冷式(ACG)、液冷式(LCG)、相变材料(PCM)、热电式(TEC)及蒸发式(ECG)5类技术的机制与应用现状。分析认为,各技术在特定场景各具优势:ACG系统轻便灵活,LCG系统适用于极端高温,PCM系统使用方便且使用时间较长,TEC系统可实现局部优异降温效果,ECG系统在干燥环境中高效。然而,各技术都有各自的技术缺陷及发展瓶颈,且微型化、能效、环境适应性和器件耐久性的平衡是其面临的共同问题。未来需在高导热柔性材料、仿生设计及智能化热管理等方面进行创新,推动PCG向轻量、高效、智能化发展,为高温作业提供精准热防护,助力安全高效的工业环境。

关键词: 高温作业, 热应激, 个体降温服装, 冷却效率, 热舒适性

Abstract:

Significance Personal cooling garment (PCG) technology has emerged as a critical solution to mitigate heat stress for workers in high-temperature environments, such as mining, firefighting, and industrial settings. With global temperatures rising, evidenced by a 1.5 ℃ increase since the Industrial Revolution and accelerating at 0.2 ℃ per decade, heat-related health risks and economic losses (e.g. $863 billion in potential income loss in 2022) are intensifying. PCGs offer a targeted approach to maintain thermal balance, enhancing worker safety and productivity where traditional cooling methods fall short. This review evaluates the technological advancements in PCGs, emphasizing their role in addressing heat stress, a growing concern amid climate change. By systematically analyzing diverse cooling mechanisms, this review underscores the importance of lightweight, efficient, and adaptable systems to meet the urgent needs of high-risk occupations, providing a foundation for innovative thermal protection strategies in industrial applications.

Progress This study evaluates five PCG technologies, i.e. air-cooled (ACG), liquid-cooled (LCG), phase change material (PCM), thermoelectric (TEC) and evaporative cooling (ECG), detailing their mechanisms and recent advancements. ACG systems show progress with the body ventilation system (BVS) offering lightweight designs (0.8-1.5 kg) and cooling capacities of 80-150 W through fan-driven convection, though efficacy wanes above 35 ℃. Vortex tube cooling (VTC) achieves 280-350 W using cold gas separation, but fixed gas source reliance (e.g. high-pressure compressors) limits portability. LCG systems excel in extreme heat (>45 ℃) situations, with vapor compression-based designs delivering 360-586 W/m2, and studies in this direction highlight miniaturization advances though energy density challenges remain. PCM-based systems like BVS/PCM hybrids provide 220-315 W/m2 and extend cooling by 28% via integrated ventilation and heat absorption, yet face 30% energy loss to ambient heat. TEC developments include flexible TEDs with over 10 ℃ localized cooling and COPs of 1.5-1.8, while LCG/TEC systems reach 220-300 W/m2, though low efficiency (e.g. ACG/TEC COP 0.85) remains a drawback. ECG systems yield 150-373 W/m2 in dry conditions, with innovations like vacuum desiccant designs doubling work duration in protective suits, but falter in high humidity. Key achievements include enhanced thermal comfort (e.g. UTCI drops of 1.5-2.3 ℃ in BVS/PCM) and robust heat management in harsh environments, reflecting strides in hybrid systems and material enhancements.

Conclusion and Prospect This review confirms that PCG technologies effectively counter heat stress, each tailored to specific contexts: ACG prioritizes portability, LCG excels in extreme heat, PCM provides extended cooling duration, TEC enables precise temperature control, and ECG thrives in arid settings. However, limitations are evident. ACG's temperature sensitivity, LCG/VCR's weight (2.2-5.2 kg) and vibration issues, PCM's heat loss, TEC's poor energy efficiency (e.g. COP below 1 for ACG/TEC), and ECG's humidity dependence all highlight areas for improvement. Current challenges center on miniaturization, energy efficiency, and environmental adaptability, critical for broader adoption. Looking ahead, interdisciplinary breakthroughs are anticipated. Biomimetic designs like vortex-inspired air channels could enhance ACG performance, while magnetic levitation compressors may lighten LCG systems. Graphene-enhanced PCM composites, boosting conductivity ninefold to 1.8 W/(m·K), promise greater efficiency, and flexible TEC heterojunctions could elevate COPs. Smart controls integrating real-time thermal sensing will optimize energy use and comfort. The study advocates for hybrid systems combining strengths (e.g. PCM and TEC) and durable, lightweight materials to address industrial demands. Collaborative research across textile engineering, materials science, and thermodynamics is vital to surmount these hurdles, driving PCGs toward lighter, more powerful, and intelligent solutions. As global heat intensifies, such innovations will underpin safer, more productive work environments, aligning with sustainable industrial goals.

Key words: high-temperature operations, heat stress, personal cooling garment, cooling efficiency, thermal comfort

中图分类号: 

  • R135.3

图1

人体通风系统原理图"

图2

涡流管冷却系统原理图"

图3

ACG/CO2复合气冷服原理图"

图4

液冷服系统原理图"

图5

储冰式液冷服"

图6

蒸气压缩制冷液冷服"

图7

相变材料冷却服"

表1

个体降温服装技术性能对比"

技术
类型
制冷量 降温效果 质量/
kg
核心限
制因素
文献
来源
BVS 80~150 W 皮肤温降
2.1~3.4 ℃
0.8~
1.5
高温效率衰减 [15-17
20]
VTC 280~350 W 核心温降
0.4 ℃
3.2~
4.1
固定气源依赖 [22-23]
GECG 420 W 核心温降
0.33 ℃
4.5~
5.1
局部过冷风险 [24-25]
BVS/PCM 220~315 W UTCI降幅
1.5~2.3 ℃
2.1~
2.8
环境吸热大 [45-48]
LCG/I 165~
243 W/m2
皮肤温降
3.4 ℃
1.2~
2.5
凝露增
加热阻
[34-35]
LCG/VCR 134~586 W UTCI降幅
4.6 ℃
2.2~
5.25
重量与
振动
[36-40]
LCG/R 178~300 W 核心温降
0.3~0.5 ℃
4.8~
5.3
可靠
性差
[41]
TED 30~60 W 局部温降
>10 ℃
0.6~
1.2
能效
比低
[49]
ACG/TEC 80~220 W 核心温降
0.3 ℃
0.45 能效
比低
[50]
LCG/TEC 220~300 W UTCI降幅
2.8~3.1 ℃
3.8~
4.5
能效
比低
[51-52]
PCMCG 50~130 W 皮肤温降
2~5 ℃
1.2~
2.8
导热
率低
[43-44]
ECG 150~
373 W/m2
UTCI降幅
2.5~4.1 ℃
1.0~
3.4
高湿环
境失效
[53-55]
[1] FRIELER K, LANGE S, PIONTEK F, et al. Assessing the impacts of 1.5 ℃ global warming-simulation protocol of the inter-sectoral impact model intercomparison project (ISIMIP2b)[J]. Geoscientific Model Development, 2017, 10(12): 4321-4345.
doi: 10.5194/gmd-10-4321-2017
[2] ESTOQUE R C, OOBA M, SEPOSO X T, et al. Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators[J]. Nature Communications, 2020, 11(1): 1581.
doi: 10.1038/s41467-020-15218-8
[3] ROMANELLO M, NAPOLI C D, DRUMMOND P, et al. The 2023 report of the Lancet Countdown on health and climate change: the imperative for a health-centred response in a world facing irreversible harms[J]. The Lancet, 2023, 402(10419): 2346-2394.
doi: 10.1016/S0140-6736(23)01859-7
[4] CRAMER M N, GAGNON D, LAITANO O, et al. Human temperature regulation under heat stress in health, disease, and injury[J]. Physiological Reviews, 2022, 102(4): 1909-1989.
[5] KOVATS S, AKHTAR R. Climate, climate change and human health in Asian cities[J]. Environment and Urbanization, 2008, 20(1): 165-175.
doi: 10.1177/0956247808089154
[6] KOVATS R S, CAMPBELL-LENDRUM D, MATTHIES F, et al. Climate change and human health: estimating avoidable deaths and disease[J]. Risk Analysis: An International Journal, 2005, 25(6): 1409-1418.
doi: 10.1111/risk.2005.25.issue-6
[7] PATZ J A, MCGEEHIN M A, BERNARD S M, et al. The potential health impacts of climate variability and change for the United States: executive summary of the report of the health sector of the US National Assess-ment[J]. Environmental Health Perspectives, 2000, 108(4): 367-376.
doi: 10.1289/ehp.00108367
[8] NUNFAM V F, ADUSEI-ASANTE K, VAN ETTEN E J, et al. Estimating the magnitude and risk associated with heat exposure among Ghanaian mining workers[J]. International Journal of Biometeorology, 2021, 65(12): 2059-2075.
doi: 10.1007/s00484-021-02164-3
[9] KIM S, KIM D H, LEE H H, et al. Frequency of firefighters’ heat-related illness and its association with removing personal protective equipment and working hours[J]. Industrial Health, 2019, 57(3): 370-380.
doi: 10.2486/indhealth.2018-0063
[10] MEADE R D, D'SOUZA A W, KRISHEN L, et al. The physiological strain incurred during electrical utilities work over consecutive work shifts in hot environments: a case report[J]. Journal of Occupational and Environmental Hygiene, 2017, 14(12): 986-994.
doi: 10.1080/15459624.2017.1365151 pmid: 28825865
[11] FLOURIS A D, IOANNOU L G, NOTLEY S R, et al. Determinants of heat stress and strain in electrical utilities workers across North America as assessed by means of an exploratory questionnaire[J]. Journal of Occupational and Environmental Hygiene, 2022, 19(1): 12-22.
doi: 10.1080/15459624.2021.2001475
[12] SAJJAD U, ABBAS N, HAMID K, et al. A review of recent advances in indirect evaporative cooling technology[J]. International Communications in Heat and Mass Transfer, 2021, 122: 105140.
doi: 10.1016/j.icheatmasstransfer.2021.105140
[13] SAJJAD U, HAMID K, SULTAN M, et al. Personal thermal management: a review on strategies, progress, and prospects[J]. International Communications in Heat and Mass Transfer, 2022, 130: 105739.
doi: 10.1016/j.icheatmasstransfer.2021.105739
[14] AMJED A A, ALI L F. Liquid cooling garment configuration and investigation: a classifying and comparative review[J]. International Communications in Heat and Mass Transfer, 2024, 159: 108114.
doi: 10.1016/j.icheatmasstransfer.2024.108114
[15] CHINEVERE T D, CADARETTE B S, GOODMAN D A, et al. Efficacy of body ventilation system for reducing strain in warm and hot climates[J]. European Journal of Applied Physiology, 2008, 103(3): 307-314.
doi: 10.1007/s00421-008-0707-9 pmid: 18327605
[16] XU X, GONZALEZ J. Determination of the cooling capacity for body ventilation system[J]. European Journal of Applied Physiology, 2011, 111(12): 3155-3160.
doi: 10.1007/s00421-011-1941-0 pmid: 21455613
[17] ZHAO M, GAO C, WANG F, et al. A study on local cooling of garments with ventilation fans and openings placed at different torso sites[J]. International Journal of Industrial Ergonomics, 2013, 43(3): 232-237.
doi: 10.1016/j.ergon.2013.01.001
[18] SUN Y, JASPER W J. Numerical modeling of heat and moisture transfer in a wearable convective cooling system for human comfort[J]. Building and Environment, 2015, 93: 50-62.
doi: 10.1016/j.buildenv.2015.06.008
[19] CHAN A P C, YI W, WONG F K W, et al. Evaluating the effectiveness and practicality of a cooling vest across four industries in Hong Kong[J]. Facilities, 2016, 34(9/10): 511-534.
doi: 10.1108/F-12-2014-0104
[20] MUZA N S R, PIMENTAL A, COSMINI H M, et al. Portable, ambient air microclimate cooling in simulated desert and tropic conditions[J]. Aviation, Space, and Environmental Medicine, 1988, 59(6): 553-558.
pmid: 3390114
[21] RANQUE G J. Experiments on expansion in a vortex with simultaneous exhaust of hot air and cold air[J]. Journal De Physique et le Radium, 1933, 4(7): 112-114.
[22] YUSOF M H, ESA A N, SUHAIMI M F. Thermal comfort attainment by personal vortex tube cooling device[J]. Energy and Environment in the Tropics, 2022, 1: 263-271.
[23] 和智殷, 张亚平, 屈方方, 等. 涡流管复合冷却服降温性能实验研究[J]. 低温与超导, 2021, 49(11): 36-40.
HE Zhiyin, ZHANG Yaping, QU Fangfang, et al. Experimental study on cooling performance of vortex tube composite cooling suit[J]. Cryogenics & Superconductivity, 2021, 49(11): 36-40.
[24] AL SAYED C, VINCHES L, DUPUY O, et al. Air/CO2 cooling garment: description and benefits of use for subjects exposed to a hot and humid climate during physical activities[J]. International Journal of Mining Science and Technology, 2019, 29(6): 899-903.
doi: 10.1016/j.ijmst.2019.02.010
[25] AL SAYED C, VINCHES L, HALLÉ S. Towards optimizing a personal cooling garment for hot and humid deep mining conditions[J]. Open Journal of Optimization, 2016, 5(1): 35-43.
doi: 10.4236/ojop.2016.51005
[26] DIONNE J P, SEMENIUK K, MAKRIS A, et al. Thermal manikin evaluation of liquid cooling garments intended for use in hazardous waste management[R]. Ottawa: Med-Eng Systems Inc, 2003.
[27] 牛丽, 钱晓明, 范金土, 等. 可降温式消防服的设计与降温效果评价[J]. 纺织学报, 2018, 39(6): 106-112.
NIU Li, QIAN Xiaoming, FAN Jintu, et al. Design of cooling firefighting protective clothing and evaluation on cooling performance[J]. Journal of Textile Research, 2018, 39(6): 106-112.
[28] BARTKOWIAK G, DABROWSKA A, MARSZALEK A. Assessment of an active liquid cooling garment intended for use in a hot environment[J]. Applied Ergonomics, 2017, 58: 182-189.
doi: S0003-6870(16)30120-X pmid: 27633212
[29] TOKIZAWA K, SON S Y, OKA T, et al. Effectiveness of a field-type liquid cooling vest for reducing heat strain while wearing protective clothing[J]. Industrial Health, 2020, 58(1): 63-71.
doi: 10.2486/indhealth.2018-0182 pmid: 31406053
[30] KIM J H, COCA A, WILLIAMS W J, et al. Effects of liquid cooling garments on recovery and performance time in individuals performing strenuous work wearing a firefighter ensemble[J]. Journal of Occupational and Environmental Hygiene, 2011, 8(7): 409-416.
doi: 10.1080/15459624.2011.584840
[31] NAG P K, PRADHAN C K, NAG A, et al. Efficacy of a water-cooled garment for auxiliary body cooling in heat[J]. Ergonomics, 1998, 41(2): 179-187.
pmid: 9494430
[32] EPSTEIN Y, SHAPIRO Y, BRILL S. Comparison between different auxiliary cooling devices in a severe hot/dry climate[J]. Ergonomics, 1986, 29(1): 41-48.
pmid: 3948843
[33] TANG J, LUK P. Wearable bio-inspired pulsating-flow cooling for live garments based on a novel design of ferrofluid micro-valve[J]. Energies, 2022, 15(23): 8826.
doi: 10.3390/en15238826
[34] GUO T, SHANG B, DUAN B, et al. Design and testing of a liquid cooled garment for hot environments[J]. Journal of Thermal Biology, 2015, 49: 47-54.
[35] SHU W, WANG J, ZHANG X, et al. A statistical study to evaluate the performance of liquid cooling garments considering thermal comfort[J]. Journal of Electronic Packaging, 2020, 142(4): 041106.
doi: 10.1115/1.4047470
[36] GRZYLL L R, MCLAUGHLIN T. A crew cooling system for the M9 Armored Combat Earth-mover (ACE)[C]// IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference. New York: IEEE, 1997, 3: 1624-1629.
[37] YUAN W, YANG B, YANG Y, et al. Development and experimental study of the characteristics of a prototype miniature vapor compression refrigerator[J]. Applied Energy, 2015, 143: 47-57.
doi: 10.1016/j.apenergy.2015.01.001
[38] ELBEL S, BOWERS C D, ZHAO H, et al. Development of microclimate cooling systems for increased thermal comfort of individuals[C]// International Refrigeration and Air Conditioning Conference. West Lafayette: Purdue University, 2012: 1183.
[39] MORRIESEN A, RESENDE F E, RAMOS L W S L, et al. Personal cooling system based on vapor compression cycle for stock car racing drivers[C]// International Refrigeration and Air Conditioning Conference. West Lafayette, IN: Purdue University, 2012: 1239.
[40] GALE J, CESMECI S. Design of a miniature HVAC system to function as a multipurpose cooling shirt[C]// ASME 2022 International Mechanical Engineering Congress and Exposition. Columbus, Ohio: American Society of Mechanical Engineers, 2022: V008T11A032.
[41] ERNST T C, GARIMELLA S. Demonstration of a wearable cooling system for elevated ambient temperature duty personnel[J]. Applied Thermal Engineering, 2013, 60(1/2): 316-324.
doi: 10.1016/j.applthermaleng.2013.06.019
[42] ZHAO M, GAO C, WANG F, et al. The torso cooling of vests incorporated with phase change materials: a sweat evaporation perspective[J]. Textile Research Journal, 2013, 83(4): 418-425.
doi: 10.1177/0040517512460294
[43] MA C, ZHANG Y, CHEN X, et al. Experimental study of an enhanced phase change material of paraffin/expanded graphite/nano-metal particles for a personal cooling system[J]. Materials, 2020, 13(4): 980.
doi: 10.3390/ma13040980
[44] QIAO Y, CAO T, MUEHLBAUER J, et al. Experimental study of a personal cooling system integrated with phase change material[J]. Applied Thermal Engineering, 2020, 170: 115026.
doi: 10.1016/j.applthermaleng.2020.115026
[45] LU Y, WEI F, LAI D, et al. A novel personal cooling system (PCS) incorporated with phase change mater-ials (PCMs) and ventilation fans: an investigation on its cooling efficiency[J]. Journal of Thermal Biology, 2015, 52: 137-146.
doi: 10.1016/j.jtherbio.2015.07.002
[46] SONG W, WANG F. The hybrid personal cooling system (PCS) could effectively reduce the heat strain while exercising in a hot and moderate humid environment[J]. Ergonomics, 2016, 59(8): 1009-1018.
doi: 10.1080/00140139.2015.1105305 pmid: 26457872
[47] WAN X, WANG F. Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans[J]. International Journal of Heat and Mass Transfer, 2018, 126: 636-648.
doi: 10.1016/j.ijheatmasstransfer.2018.05.155
[48] KANG Z, WAN X, WANG F. A new hybrid personal cooling system (HPCS) incorporating insulation pads for thermal comfort management: experimental validation and parametric study[J]. Building and Environment, 2018, 145: 276-289.
doi: 10.1016/j.buildenv.2018.09.033
[49] HONG S, GU Y, SEO J K, et al. Wearable thermoelectrics for personalized thermoregulation[J]. Science Advances, 2019, 5(5): 536.
doi: 10.1126/sciadv.aaw0536 pmid: 31114803
[50] LI B, WANG F, JIANG F, et al. Performance study of portable semiconductor refrigeration device based on CFD simulation[J]. Micromachines, 2023, 14(2): 296.
doi: 10.3390/mi14020296
[51] ZHANG M, LI Z, WANG Q, et al. Performance investigation of a portable liquid cooling garment using thermoelectric cooling[J]. Applied Thermal Engineering, 2022, 214: 118830.
doi: 10.1016/j.applthermaleng.2022.118830
[52] LI L, LIU W D, SUN W, et al. Performance optimization of a thermoelectric-water hybrid cooling garment[J]. Advanced Materials Technologies, 2023, 8(22): 2301069.
[53] ROTHMAIER M, WEDER M, MEYER-HEIM A, et al. Design and performance of personal cooling garments based on three-layer laminates[J]. Medical & Biological Engineering & Computing, 2008, 46(8): 825-832.
[54] YANG R, JOVANOVIĆ D B, RADAKOVIĆ S S, et al. The influence of the passive evaporative cooling vest on a chemical industry workers and physiological strain level in hot conditions[J]. Hemijska Industrija, 2015, 69(6): 587-594.
doi: 10.2298/HEMIND140705079K
[55] YANG Y, STAPLETON J, DIAGNE B T, et al. Man-portable personal cooling garment based on vacuum desiccant cooling[J]. Applied Thermal Engineering, 2012, 47: 18-24.
doi: 10.1016/j.applthermaleng.2012.04.012
[1] 丁小蝶, 唐虹, 高强, 张成蛟. 上躯干皮肤温度冷热变化与热量调节区划分[J]. 纺织学报, 2024, 45(05): 147-154.
[2] 柯莹, 林磊, 郑晴, 王宏付. 电加热服加热区域分布对人体热舒适感的影响[J]. 纺织学报, 2024, 45(04): 188-194.
[3] 刘雨婷, 宋泽涛, 赵胜男, 王星岚, 常素芹. 个体冷却服的研究现状与发展趋势[J]. 纺织学报, 2023, 44(12): 233-241.
[4] 张昭华, 陈雪, 倪军, 杨玉桐, 邹一凡. 冷环境下局部电加热对人体热反应的影响[J]. 纺织学报, 2023, 44(03): 187-194.
[5] 江舒, 李俊. 婴儿被服热舒适性研究进展[J]. 纺织学报, 2022, 43(08): 189-196.
[6] 柳洋, 夏兆鹏, 王亮, 范杰, 曾强, 刘雍. 医用防护服的发展现状及趋势[J]. 纺织学报, 2021, 42(09): 195-202.
[7] 郑晴, 王宏付, 柯莹, 李爽. 相变降温矿工服的设计与评价[J]. 纺织学报, 2020, 41(03): 124-129.
[8] 赵蒙蒙, 柯莹, 王发明, 李俊. 通风服热舒适性研究现状与展望[J]. 纺织学报, 2019, 40(03): 183-188.
[9] 褚俊杰 黄翔 孙铁柱. 露点间接蒸发冷却器换热效能理论与性能实验对比[J]. 纺织学报, 2018, 39(11): 150-157.
[10] 张文欢 钱晓明 师云龙 范金土 牛丽. 服装局部热阻与总热阻的动静态关系及其模型[J]. 纺织学报, 2018, 39(07): 111-115.
[11] 段杏元 胡源盛. 男士针织内衣热性能的测量与分析[J]. 纺织学报, 2016, 37(12): 92-96.
[12] 郭晓芳 刘文娟. 巴尔虎蒙古袍的热舒适性能[J]. 纺织学报, 2016, 37(01): 123-126.
[13] 朱方龙 樊建彬 冯倩倩 周宇. 相变材料在消防服中的应用及可行性分析[J]. 纺织学报, 2014, 35(8): 124-0.
[14] 王云仪, 赵蒙蒙. 高温强辐射下相变降温背心的热调节作用客观测评[J]. 纺织学报, 2012, 33(5): 101-105.
[15] 汪秀清;张昌;高猛. 单向导汗织物的热舒适性[J]. 纺织学报, 2010, 31(10): 40-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!