纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 258-267.doi: 10.13475/j.fzxb.20241200302

• 综合述评 • 上一篇    下一篇

三维蚕丝蛋白支架的应用研究进展

曾姚, 吕金凤, 王介平, 刘荣鹏, 周婵()   

  1. 重庆市畜牧科学院 蚕业研究所, 重庆 402460
  • 收稿日期:2024-12-02 修回日期:2025-05-06 出版日期:2025-09-15 发布日期:2025-11-12
  • 通讯作者: 周婵(1982—),女,副研究员,博士。研究方向为蚕桑生物资源的发掘和创新利用。E-mail:chanzhoum@163.com
  • 作者简介:曾姚(1995—),女,助理研究员,硕士。主要研究方向为蚕桑资源综合利用和蚕丝生物医学材料研发。
  • 基金资助:
    重庆市科研机构绩效激励引导专项(cstc2022jxj180017);重庆荣昌农牧高新技术产业研发专项(22541);重庆市现代农业产业技术体系蚕桑创新团队项目(23323)

Progress in application of three-dimensional silk protein scaffolds

ZENG Yao, LÜ Jinfeng, WANG Jieping, LIU Rongpeng, ZHOU Chan()   

  1. Technology Institute of Silk and Mulberry, ChongQing Academy of Animal Sciences, Chongqing 402460, China
  • Received:2024-12-02 Revised:2025-05-06 Published:2025-09-15 Online:2025-11-12

摘要:

为拓展蚕丝蛋白在组织工程与生物医学领域的应用,解决临床适配材料研制不足的问题,阐述了三维蚕丝蛋白支架培养与二维培养在细胞分化、增殖、黏附等行为上表现出的显著差异,及其在疾病治疗、药物筛选及疗效评估中展现的应用潜力。阐述了三维蚕丝蛋白支架的结构设计、制备工艺及其在皮肤、骨、软骨、韧带和神经组织工程中的应用。分析表明,材料结构与组织再生需求的适配性至关重要,而临床规模化制备及性能精准调控仍是亟待突破的关键挑战。通过整合该领域的研究脉络,为蚕丝生物材料的医学转化提供了针对应用场景、技术路径及瓶颈突破的系统性参考。

关键词: 丝素蛋白, 丝胶蛋白, 三维细胞培养, 三维蚕丝蛋白支架, 组织工程

Abstract:

Significance Silk protein is a naturally occurring polymer protein composed of sericin and fibroin. Fibroin has good biocompatibility, adjustable biodegradability, excellent antimicrobial properties and mechanical properties as well as strong moldable properties. Sericin has properties such as good water solubility, unique gelation properties and cell adhesion promotion. Therefore, silk proteins are often utilized to prepare various types of biomedical materials and tissue repair, among which three-dimensional silk protein scaffolds are more widely used. In order to expand the application of silk protein in biomaterials and tissue engineering and promote the clinical research of filament-based materials, the structure and preparation methods of three-dimensional silk protein scaffolds and the latest research progress and limitations of three-dimensional silk protein scaffolds in cell culture, skin, bone, cartilage, ligament and nerve repair were reviewed, aiming to provide a valuable reference for the application of silk-based biomaterials in the medical field.

Progress Silk proteins have been shown to be biocompatible and maintain normal cell growth in both two-dimensional and three-dimensional cultures, but three-dimensional cultures based on silk proteins are able to provide cells with a porous structure that can be used as a geometrical carrier for directed cell growth, and three-dimensional culture is more suitable for disease modeling than two-dimensional culture, and more accurate results can be obtained. Since donor shortages, immune rejection of grafts, repeated surgeries, and long recovery times are prevalent in the repair of locomotor systems such as bone, cartilage, and ligaments, silk proteins have been widely adopted to prepare raw materials for the repair of these tissues by virtae of their unique properties. Three-dimensional silk protein-based scaffolds can reduce pain, shorten wound healing time as well as promote skin barrier recovery as wound dressings. The repair and regeneration effects of three-dimensional silk protein scaffolds on skin can also be further enhanced through the compounding and functionalization of raw materials. Three-dimensional silk protein-based scaffolds can promote osteoblast differentiation, repair bone defects, form artificial cartilage in animals, and also promote ligament regeneration. In addition, Three-dimensional silk protein conduits can promote the proliferation of nerve cells and the secretion of neurotrophic factors, and provide direction for the growth of nerve fibers.

Conclusion and Prospect Because silk protein has many excellent properties, its preparation into three-dimensional scaffolds has been widely used in cell culture and tissue engineering, and it has significant advantages in promoting cell proliferation and adhesion, including promoting cell proliferation and adhesion, accelerating wound healing, collagen deposition, promoting angiogenesis, inducing osteoblast differentiation, forming cartilage in vitro and achieving functional integration in vivo, enhancing ligament-specific differentiation of adult stem cells, promoting nerve repair and so on. However, due to tissue specificity, for different damaged tissues or organs, a single silk protein scaffold material may have certain deficiencies in tissue affinity, mechanical properties, structure and functionality, so it is necessary to form a composite material by combining materials with different performance advantages. Although silk proteins have no significant side effects, the results show that structurally and functionally modified silk proteins have broader prospects for biomedical applications. In order to promote the research process of silk proteins in clinical applications, standardized and verifiable 3D cell culture models can be established in the future, while further technological improvements and optimizations can be enhanced in the areas of high-throughput analysis, image scanning, reproducibility, compatible readout technology and automation.

Key words: silk fibroin, silk sericin, three-dimensional cell culture, three-dimensional silk protein scaffold, tissue engineering

中图分类号: 

  • TS101.4

表1

蚕丝蛋白三维支架及其制备方式"

原料 支架类型 制备方法 修复组织 参考文献
丝素蛋白 三维支架 冷冻干燥 皮肤 [24-25]
壳聚糖/丝胶蛋白 三维支架 超声处理 [26]
丝素蛋白/海藻酸钠 三维支架 冷冻干燥/
塑模
[27]
[28]
丝胶蛋白/甲基丙烯酸酐改性明胶 水凝胶 3D打印
丝素蛋白/壳聚糖 三维支架 冷冻干燥 [29]
丝素蛋白/
羟基磷灰石
三维支架 3D打印 [30]
丝胶蛋白/
明胶/胶原
三维支架 烘干 [6]
海藻酸盐/丝胶蛋
白/氧化石墨烯
水凝胶 酶促交联 [19]
丝素蛋白 海绵 冷冻干燥 软骨 [31]
丝素蛋白 三维支架 塑模室温
蒸发
[32]
丝胶蛋白 水凝胶 紫外光
光交联
[33]
丝素蛋白/明胶/骨髓间充质干细胞特异性亲和肽 三维支架 3D打印 [7]
丝素纤维/胶原 三维
支架
冷冻干燥和
脱水热交联
前交叉
韧带
[21]
丝素蛋白 三维支架 3D打印 神经 [34]
丝素蛋白 神经导管 酶促交联/
冷冻干燥
[35]
丝素蛋白 神经导管 冻融 [23]
丝素蛋白/
丝素纤维
神经导管 编织/
冷冻干燥
[36]
丝素蛋白/层粘
连蛋白/丙烯酸酯
水凝胶 光交联 [37]

表2

蚕丝蛋白的二维与三维细胞共培养"

培养方式 细胞类型 共培养效果 参考文献
二维 MC3T3-E1 细胞数量增加,代谢活性
基本不变,促进细胞增殖
[1,43]
L929 活细胞增多,细胞活力增强 [40]
MC3T3 促进细胞黏附和生长 [41]
三维 Caco-2/
HT29-MTX
细胞呈现极化和组织屏障特性 [2]
MSC 促进细胞持续增殖,改变细胞
代谢物的分泌,优化细胞性能
[3]
MSCs、OB 三维培养后能更好的促进成骨 [8]
NIH-3T3 提高细胞活力,促进细胞增殖 [44]
Huh7 促进细胞分化,细胞附着、扩散和
生长效果显著优于二维培养
[45]
HepR21 黏附性、活力、代谢活性、
增殖能力显著强于二维培养
[46]
786-O 脂质含量显著高于二维培养,
脂滴积累的增加
[47]
PC12 具有良好的黏附性、
增殖性和扩散性
[34]
[1] LI D W, HE F L, HE J, et al. From 2D to 3D: the morphology, proliferation and differentiation of MC3T3-E1 on silk fibroin/chitosan matrices[J]. Carbohydrate Polymers, 2017, 178: 69-77.
doi: 10.1016/j.carbpol.2017.09.035
[2] RUDOLPH S E, LONGO B N, TSE M W, et al. Crypt-villus scaffold architecture for bioengineering functional human intestinal epithelium[J]. ACS Biomaterials Science & Engineering, 2022, 8(11): 4942-4955.
[3] PHUAGKHAOPONG S, MENDES L, MÜLLER K, et al. Silk hydrogel substrate stress relaxation primes mesenchymal stem cell behavior in 2D[J]. ACS Applied Materials & Interfaces, 2021, 13(26): 30420-30433.
[4] COLLODET C, BLUST K, GKOUMA S, et al. Development and characterization of a recombinant silk network for 3D culture of immortalized and fresh tumor-derived breast cancer cells[J]. Bioengineering & Translational Medicine, 2023, 8(5): e10537.
[5] LI X F, LIU Y, ZHANG J, et al. Functionalized silk fibroin dressing with topical bioactive insulin release for accelerated chronic wound healing[J]. Materials Science and Engineering: C, 2017, 72: 394-404.
doi: 10.1016/j.msec.2016.11.085
[6] LEE J H, KWEON H, OH J H, et al. The optimal scaffold for silk sericin-based bone graft: collagen versus gelatin[J]. Maxillofacial Plastic and Reconstructive Surgery, 2023, 45(1): 2.
doi: 10.1186/s40902-022-00368-0 pmid: 36617599
[7] SHI W L, SUN M Y, HU X Q, et al. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo[J]. Advanced Materials, 2017, 29(29): 1701089.
doi: 10.1002/adma.v29.29
[8] TAHER MOHAMED S A, EMIN N. Effects of using collagen and aloe vera grafted fibroin scaffolds on osteogenic differentiation of rat bone marrow mesenchymal stem cells in SBF-enriched cell culture medium[J]. Biomedical Materials, 2024, 19(1): 015011.
doi: 10.1088/1748-605X/ad12e2
[9] DUVAL K, GROVER H, HAN L H, et al. Modeling physiological events in 2D vs. 3D cell culture[J]. Physiology, 2017, 32(4): 266-277.
doi: 10.1152/physiol.00036.2016
[10] QI Y, WANG H, WEI K, et al. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures[J]. International Journal of Molecular Sciences, 2017, 18(3): 237.
doi: 10.3390/ijms18030237
[11] JAO D, MOU X Y, HU X. Tissue regeneration: a silk road[J]. Journal of Functional Biomaterials, 2016, 7(3): 22.
doi: 10.3390/jfb7030022
[12] CAO T T, ZHANG Y Q. Processing and characterization of silk sericin from Bombyx Mori and its application in biomaterials and biomedicines[J]. Materials Science and Engineering: C, 2016, 61: 940-952.
doi: 10.1016/j.msec.2015.12.082
[13] KUNZ R I, BRANCALHÃO R M C, DE FÁTIMA CHASKO RIBEIRO L, et al. Silkworm sericin: properties and biomedical applications[J]. BioMed Research International, 2016(1): 8175701.
[14] 拜凤姣, 王卉, 陈晓敏, 等. 丝素蛋白基纺织材料及其在生物医学领域的应用[J]. 材料导报, 2020, 34(7): 7154-7160.
BAI Fengjiao, WANG Hui, CHEN Xiaomin, et al. Silk fibroin-based textile materials and their application in biomedical field[J]. Materials Reports, 2020, 34(7): 7154-7160.
[15] RAVI M, PARAMESH V, KAVIYA S R, et al. 3D cell culture systems: advantages and applications[J]. Journal of Cellular Physiology, 2015, 230(1): 16-26.
doi: 10.1002/jcp.24683 pmid: 24912145
[16] SUN Y Q, MA H Y. Application of three-dimensional cell culture technology in screening anticancer drugs[J]. Biotechnology Letters, 2023, 45(9): 1073-1092.
doi: 10.1007/s10529-023-03410-x pmid: 37421554
[17] BIJU T S, PRIYA V V, FRANCIS A P. Role of three-dimensional cell culture in therapeutics and diagnostics: an updated review[J]. Drug Delivery and Translational Research, 2023, 13(9): 2239-2253.
doi: 10.1007/s13346-023-01327-6 pmid: 36971997
[18] 李冉, 汪虹, 冷崇燕, 等. 天然高分子材料及其衍生物制备组织工程真皮支架的研究进展[J]. 中华烧伤杂志, 2016, 32(5): 316-318.
LI Ran, WANG Hong, LENG Chongyan, et al. Advances in the research of natural polymeric materials and their derivatives in the manufacture of scaffolds for dermal tissue engineering[J]. Chinese Journal of Burns, 2016, 32(5): 316-318.
doi: 10.3760/cma.j.issn.1009-2587.2016.05.014 pmid: 27188491
[19] JIANG L B, DING S L, DING W, et al. Injectable sericin based nanocomposite hydrogel for multi-modal imaging-guided immunomodulatory bone regenera-tion[J]. Chemical Engineering Journal, 2021, 418: 129323.
doi: 10.1016/j.cej.2021.129323
[20] FAN H B, LIU H F, WONG E J W, et al. In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold[J]. Biomaterials, 2008, 29(23): 3324-3337.
doi: 10.1016/j.biomaterials.2008.04.012
[21] BI F G, CHEN Y D, LIU J Q, et al. Bone mesenchymal stem cells contribute to ligament regeneration and graft-bone healing after anterior cruciate ligament reconstruction with silk-collagen scaffold[J]. Stem Cells International, 2021, 2021: 6697969.
[22] CHOUHAN D, JANANI G, CHAKRABORTY B, et al. Functionalized PVA-silk blended nanofibrous mats promote diabetic wound healing via regulation of extracellular matrix and tissue remodelling[J]. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(3): e1559-e1570.
[23] MATSUO T, KIMURA H, NISHIJIMA T, et al. Peripheral nerve regeneration using a bioresorbable silk fibroin-based artificial nerve conduit fabricated via a novel freeze-thaw process[J]. Scientific Reports, 2025, 15: 3797.
doi: 10.1038/s41598-025-88221-y
[24] LU G Z, DING Z Z, WEI Y Y, et al. Anisotropic biomimetic silk scaffolds for improved cell migration and healing of skin wounds[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44314-44323.
[25] GUAN G P, BAI L, ZUO B Q, et al. Promoted dermis healing from full-thickness skin defect by porous silk fibroin scaffolds (PSFSs)[J]. Bio-Medical Materials and Engineering, 2010, 20(5): 295-308.
doi: 10.3233/BME-2010-0643
[26] KARAHALILOGLU Z, KILICAY E, DENKBAS E B. Antibacterial chitosan/silk sericin 3D porous scaffolds as a wound dressing material[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 45(6): 1172-1185.
doi: 10.1080/21691401.2016.1203796
[27] SHEN Y, WANG X Y, WANG Y Y, et al. Bilayer silk fibroin/sodium alginate scaffold promotes vascularization and advances inflammation stage in full-thickness wound[J]. Biofabrication, 2022, 14(3): 035016.
doi: 10.1088/1758-5090/ac73b7
[28] CHEN C S, ZENG F, XIAO X, et al. Three-dimensionally printed silk-sericin-based hydrogel scaffold: a promising visualized dressing material for real-time monitoring of wounds[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 33879-33890.
[29] BHARDWAJ N, KUNDU S C. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends[J]. Biomaterials, 2012, 33(10): 2848-2857.
doi: 10.1016/j.biomaterials.2011.12.028 pmid: 22261099
[30] FITZPATRICK V, MARTÍN-MOLDES Z, DECK A, et al. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization[J]. Biomaterials, 2021, 276: 120995.
doi: 10.1016/j.biomaterials.2021.120995
[31] LUO Z W, JIANG L, XU Y, et al. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model[J]. Biomaterials, 2015, 52: 463-475.
[32] WANG Y Z, KIM U J, BLASIOLI D J, et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells[J]. Biomaterials, 2005, 26(34): 7082-7094.
doi: 10.1016/j.biomaterials.2005.05.022
[33] QI C, LIU J, JIN Y, et al. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage[J]. Biomaterials, 2018, 163: 89-104.
doi: S0142-9612(18)30094-2 pmid: 29455069
[34] KUMAR P, JIMENEZ FRANCO A, ZHAO X B. 3D culture of fibroblasts and neuronal cells on microfabricated free-floating carriers[J]. Colloids and Surfaces B: Biointerfaces, 2023, 227: 113350.
doi: 10.1016/j.colsurfb.2023.113350
[35] ESCOBAR A, CARVALHO M R, SILVA T H, et al. Longitudinally aligned inner-patterned silk fibroin conduits for peripheral nerve regeneration[J]. In Vitro Models, 2023, 2(5): 195-205.
doi: 10.1007/s44164-023-00050-3 pmid: 39872172
[36] ZHANG S J, WANG J, ZHENG Z Z, et al. Porous nerve guidance conduits reinforced with braided composite structures of silk/magnesium filaments for peripheral nerve repair[J]. Acta Biomaterialia, 2021, 134: 116-130.
doi: 10.1016/j.actbio.2021.07.028 pmid: 34289421
[37] LIU Y S, ZHANG Z Z, ZHANG Y J, et al. Construction of adhesive and bioactive silk fibroin hydrogel for treatment of spinal cord injury[J]. Acta Biomaterialia, 2023, 158: 178-189.
doi: 10.1016/j.actbio.2022.12.048
[38] ZHAO C B. Cell culture: in vitro model system and a promising path to in vivo applications[J]. Journal of Histotechnology, 2023, 46(1): 1-4.
doi: 10.1080/01478885.2023.2170772
[39] PAMPALONI F, REYNAUD E G, STELZER E H K. The third dimension bridges the gap between cell culture and live tissue[J]. Nature Reviews Molecular Cell Biology, 2007, 8(10): 839-845.
doi: 10.1038/nrm2236 pmid: 17684528
[40] BAE Y J, JANG M J, UM I C. Silk/rayon webs and nonwoven fabrics: fabrication, structural characteristics, and properties[J]. International Journal of Molecular Sciences, 2022, 23(14): 7511.
doi: 10.3390/ijms23147511
[41] ZHOU W H, JIA Z J, XIONG P, et al. Bioinspired and biomimetic AgNPs/gentamicin-embedded silk fibroin coatings for robust antibacterial and osteogenetic applications[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 25830-25846.
[42] 王曙东, 马倩, 王可, 等. 蚕丝蛋白/明胶复合水凝胶的结构与生物相容性[J]. 纺织学报, 2020, 41(11): 41-47.
doi: 10.13475/j.fzxb.20200301007
WANG Shudong, MA Qian, WANG Ke, et al. Structure and biocompatibility of silk fibroin/gelatin blended hydrogels[J]. Journal of Textile Research, 2020, 41(11): 41-47.
doi: 10.13475/j.fzxb.20200301007
[43] MEHRJOU B, MO S, DEHGHAN-BANIANI D, et al. Antibacterial and cytocompatible nanoengineered silk-based materials for orthopedic implants and tissue engineering[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 31605-31614.
[44] KIM E, SEOK J M, BAE S B, et al. Silk fibroin enhances cytocompatibilty and dimensional stability of alginate hydrogels for light-based three-dimensional bioprinting[J]. Biomacromolecules, 2021, 22(5): 1921-1931.
doi: 10.1021/acs.biomac.1c00034
[45] SHARMA A, RAWAL P, TRIPATHI D M, et al. Upgrading hepatic differentiation and functions on 3D printed silk-decellularized liver hybrid scaffolds[J]. ACS Biomaterials Science & Engineering, 2021, 7(8): 3861-3873.
[46] KUNDU B, SAHA P, DATTA K, et al. A silk fibroin based hepatocarcinoma model and the assessment of the drug response in hyaluronan-binding protein 1 overexpressed HepG2 cells[J]. Biomaterials, 2013, 34(37): 9462-9474.
doi: 10.1016/j.biomaterials.2013.08.047 pmid: 24016853
[47] ABBOTT A, BOND K, CHIBA T, et al. Development of a mechanically matched silk scaffolded 3D clear cell renal cell carcinoma model[J]. Materials Science and Engineering: C, 2021, 126: 112141.
doi: 10.1016/j.msec.2021.112141
[48] GHOLIPOURMALEKABADI M, SAPRU S, SAMADIKUCHAKSARAEI A, et al. Silk fibroin for skin injury repair: where do things stand[J]. Advanced Drug Delivery Reviews, 2020, 153: 28-53.
doi: 10.1016/j.addr.2019.09.003
[49] FAROKHI M, MOTTAGHITALAB F, FATAHI Y, et al. Overview of silk fibroin use in wound dressings[J]. Trends in Biotechnology, 2018, 36(9): 907-922.
doi: S0167-7799(18)30117-3 pmid: 29764691
[50] XU N, WANG L L, GUAN J J, et al. Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model[J]. International Journal of Biological Macromolecules, 2018, 117: 102-107.
doi: 10.1016/j.ijbiomac.2018.05.066
[51] HASATSRI S, ANGSPATT A, ARAMWIT P. Randomized clinical trial of the innovative bilayered wound dressing made of silk and gelatin: safety and efficacy tests using a split-thickness skin graft model[J]. Evidence-Based Complementary and Alternative Medicine, 2015, 2015(1): 206871.
[52] LIU J H, YAN L W, YANG W, et al. Controlled-release neurotensin-loaded silk fibroin dressings improve wound healing in diabetic rat model[J]. Bioactive Materials, 2019, 4: 151-159.
doi: 10.1016/j.bioactmat.2019.03.001 pmid: 30989151
[53] BABA A, MATSUSHITA S, KITAYAMA K, et al. Silk fibroin produced by transgenic silkworms overexpressing the Arg-Gly-Asp motif accelerates cutaneous wound healing in mice[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2019, 107(1): 97-103.
doi: 10.1002/jbm.b.v107.1
[54] WANG Y Y, WANG X Y, SHI J, et al. A biomimetic silk fibroin/sodium alginate composite scaffold for soft tissue engineering[J]. Scientific Reports, 2016, 6: 39477.
doi: 10.1038/srep39477 pmid: 27996001
[55] ZHOU Y S, YANG H J, LIU X, et al. Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings[J]. International Journal of Biological Macromolecules, 2013, 53: 88-92.
doi: 10.1016/j.ijbiomac.2012.11.013 pmid: 23164753
[56] GILOTRA S, CHOUHAN D, BHARDWAJ N, et al. Potential of silk sericin based nanofibrous mats for wound dressing applications[J]. Materials Science and Engineering: C, 2018, 90: 420-432.
doi: 10.1016/j.msec.2018.04.077
[57] YAN S Q, ZHANG Q, WANG J N, et al. Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction[J]. Acta Biomaterialia, 2013, 9(6): 6771-6782.
doi: 10.1016/j.actbio.2013.02.016 pmid: 23419553
[58] XIONG S, ZHANG X Z, LU P, et al. A gelatin-sulfonated silk composite scaffold based on 3D printing technology enhances skin regeneration by stimulating epidermal growth and dermal neovascularization[J]. Scientific Reports, 2017, 7: 4288.
doi: 10.1038/s41598-017-04149-y pmid: 28655891
[59] XIE S Y, PENG L H, SHAN Y H, et al. Adult stem cells seeded on electrospinning silk fibroin nanofiberous scaffold enhance wound repair and regeneration[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(6): 5498-5505.
doi: 10.1166/jnn.2016.11730
[60] HORAN R L, COLLETTE A L, LEE C, et al. Yarn design for functional tissue engineering[J]. Journal of Biomechanics, 2006, 39(12): 2232-2240.
pmid: 16182301
[61] CHEN J S, ALTMAN G H, KARAGEORGIOU V, et al. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers[J]. Journal of Biomedical Materials Research Part A, 2003, 67(2): 559-570.
pmid: 14566798
[62] DING Z Z, CHENG W N, MIA M S, et al. Silk biomaterials for bone tissue engineering[J]. Macromolecular Bioscience, 2021, 21(8): 2100153.
doi: 10.1002/mabi.v21.8
[63] SUN W Z, GREGORY D A, TOMEH M A, et al. Silk fibroin as a functional biomaterial for tissue engi-neering[J]. International Journal of Molecular Sciences, 2021, 22(3): 1499.
doi: 10.3390/ijms22031499
[64] 李婧. 丝素蛋白在骨组织工程中的应用进展[J]. 中国运动医学杂志, 2018, 37(11): 956-960.
LI Jing. Application progress of silk fibroin in bone tissue engineering[J]. Chinese Journal of Sports Medicine, 2018, 37(11): 956-960.
[65] GOKILA S, GOMATHI T, VIJAYALAKSHMI K, et al. Development of 3D scaffolds using nanochitosan/silk-fibroin/hyaluronic acid biomaterials for tissue engineering applications[J]. International Journal of Biological Macromolecules, 2018, 120: 876-885.
doi: S0141-8130(18)33444-5 pmid: 30171951
[66] MEINEL L, FAJARDO R, HOFMANN S, et al. Silk implants for the healing of critical size bone defects[J]. Bone, 2005, 37(5): 688-698.
doi: 10.1016/j.bone.2005.06.010 pmid: 16140599
[67] JO Y Y, KWEON H, KIM D W, et al. Silk sericin application increases bone morphogenic protein-2/4 expression via a toll-like receptor-mediated pathway[J]. International Journal of Biological Macromolecules, 2021, 190: 607-617.
doi: 10.1016/j.ijbiomac.2021.09.021
[68] LIU M, ZENG X, MA C, et al. Injectable hydrogels for cartilage and bone tissue engineering[J]. Bone Research, 2017, 5: 17014.
doi: 10.1038/boneres.2017.14 pmid: 28584674
[69] WANG Y Z, BLASIOLI D J, KIM H J, et al. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes[J]. Biomaterials, 2006, 27(25): 4434-4442.
pmid: 16677707
[70] ALTMAN G H, HORAN R L, LU H H, et al. Silk matrix for tissue engineered anterior cruciate liga-ments[J]. Biomaterials, 2002, 23(20): 4131-4141.
doi: 10.1016/S0142-9612(02)00156-4
[71] HU H R, WANG L, XU B, et al. Construction of a composite hydrogel of silk sericin via horseradish peroxidase-catalyzed graft polymerization of poly-PEGDMA[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2020, 108(6): 2643-2655.
doi: 10.1002/jbm.b.v108.6
[72] MING P Y, RAO P C, WU T L, et al. Biomimetic design and fabrication of sericin-hydroxyapatite based membranes with osteogenic activity for periodontal tissue regeneration[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 899293.
doi: 10.3389/fbioe.2022.899293
[73] HE M, HU H R, WANG P, et al. Preparation of a bio-composite of sericin-g-PMMA via HRP-mediated graft copolymerization[J]. International Journal of Biological Macromolecules, 2018, 117: 323-330.
doi: S0141-8130(18)31581-2 pmid: 29842956
[74] POONGODI R, CHEN Y L, YANG T H, et al. Bio-scaffolds as cell or exosome carriers for nerve injury repair[J]. International Journal of Molecular Sciences, 2021, 22(24): 13347.
doi: 10.3390/ijms222413347
[75] YONESI M, GARCIA-NIETO M, GUINEA G V, et al. Silk fibroin: an ancient material for repairing the injured nervous system[J]. Pharmaceutics, 2021, 13(3): 429.
doi: 10.3390/pharmaceutics13030429
[76] LU Q Q, ZHANG F, CHENG W N, et al. Nerve guidance conduits with hierarchical anisotropic architecture for peripheral nerve regeneration[J]. Advanced Healthcare Materials, 2021, 10(14): 2100427.
doi: 10.1002/adhm.v10.14
[77] LI X H, ZHU X, LIU X Y, et al. The corticospinal tract structure of collagen/silk fibroin scaffold implants using 3D printing promotes functional recovery after complete spinal cord transection in rats[J]. Journal of Materials Science: Materials in Medicine, 2021, 32(4): 31.
doi: 10.1007/s10856-021-06500-2
[1] 高闻语, 陈诚, 奚晓玮, 邓林红, 刘杨. 改性丝素蛋白纤维增强胶原基角膜修复材料的制备及其性能[J]. 纺织学报, 2025, 46(08): 1-9.
[2] 江淑宁, 杨海伟, 李长龙, 郑天亮, 王宗乾. 低共熔溶剂剥离法制备丝素蛋白纳米原纤及其成膜性能[J]. 纺织学报, 2025, 46(07): 1-9.
[3] 于梦菲, 高文丽, 任婧, 曹雷涛, 彭若铉, 凌盛杰. 摩擦纳米发电机用皮芯结构纤维的制备及其性能[J]. 纺织学报, 2025, 46(05): 1-9.
[4] 罗欣, 王磊, 王筱悠, 伍韬, 张贞贞, 张一帆. 丝素蛋白多级结构的自组装机制及其重构材料研究进展[J]. 纺织学报, 2025, 46(03): 225-235.
[5] 詹克静, 杨鑫, 张应龙, 张昕, 潘志娟. 自凝聚丝素蛋白微纳米纤维膜的制备及其力学增强[J]. 纺织学报, 2025, 46(02): 10-19.
[6] 杨柳, 杜磊, 徐淮中. 熔体近场直写制备组织工程支架的研究进展[J]. 纺织学报, 2025, 46(01): 206-216.
[7] 杨鑫, 张昕, 潘志娟. 丝素纳米原纤增强再生丝素蛋白/聚乙烯醇纤维的结构与性能[J]. 纺织学报, 2024, 45(11): 1-9.
[8] 李蒙, 戴梦男, 俞杨销, 王建南. 丝素蛋白基骨修复材料的应用研究进展[J]. 纺织学报, 2024, 45(10): 224-231.
[9] 王勃翔, 徐航丹, 李佳, 林杰, 程德红, 路艳华. 柞蚕丝素纳米纤维温敏复合膜制备及其生物相容性[J]. 纺织学报, 2024, 45(09): 18-25.
[10] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[11] 张子凡, 李鹏飞, 王建南, 许建梅. 丝素蛋白载药纳米粒的研究进展[J]. 纺织学报, 2023, 44(10): 205-213.
[12] 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10.
[13] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[14] 罗元泽, 戴梦男, 李蒙, 俞杨销, 王建南. 丝素蛋白基药物载体的应用研究进展[J]. 纺织学报, 2023, 44(09): 213-222.
[15] 狄纯秋, 郭静, 管福成, 相玉龙, 单继成. 双金属离子交联海藻酸盐复合相变纤维的制备与性能[J]. 纺织学报, 2023, 44(05): 54-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!