纺织学报 ›› 2025, Vol. 46 ›› Issue (09): 258-267.doi: 10.13475/j.fzxb.20241200302
ZENG Yao, LÜ Jinfeng, WANG Jieping, LIU Rongpeng, ZHOU Chan(
)
摘要:
为拓展蚕丝蛋白在组织工程与生物医学领域的应用,解决临床适配材料研制不足的问题,阐述了三维蚕丝蛋白支架培养与二维培养在细胞分化、增殖、黏附等行为上表现出的显著差异,及其在疾病治疗、药物筛选及疗效评估中展现的应用潜力。阐述了三维蚕丝蛋白支架的结构设计、制备工艺及其在皮肤、骨、软骨、韧带和神经组织工程中的应用。分析表明,材料结构与组织再生需求的适配性至关重要,而临床规模化制备及性能精准调控仍是亟待突破的关键挑战。通过整合该领域的研究脉络,为蚕丝生物材料的医学转化提供了针对应用场景、技术路径及瓶颈突破的系统性参考。
中图分类号:
| [1] |
LI D W, HE F L, HE J, et al. From 2D to 3D: the morphology, proliferation and differentiation of MC3T3-E1 on silk fibroin/chitosan matrices[J]. Carbohydrate Polymers, 2017, 178: 69-77.
doi: 10.1016/j.carbpol.2017.09.035 |
| [2] | RUDOLPH S E, LONGO B N, TSE M W, et al. Crypt-villus scaffold architecture for bioengineering functional human intestinal epithelium[J]. ACS Biomaterials Science & Engineering, 2022, 8(11): 4942-4955. |
| [3] | PHUAGKHAOPONG S, MENDES L, MÜLLER K, et al. Silk hydrogel substrate stress relaxation primes mesenchymal stem cell behavior in 2D[J]. ACS Applied Materials & Interfaces, 2021, 13(26): 30420-30433. |
| [4] | COLLODET C, BLUST K, GKOUMA S, et al. Development and characterization of a recombinant silk network for 3D culture of immortalized and fresh tumor-derived breast cancer cells[J]. Bioengineering & Translational Medicine, 2023, 8(5): e10537. |
| [5] |
LI X F, LIU Y, ZHANG J, et al. Functionalized silk fibroin dressing with topical bioactive insulin release for accelerated chronic wound healing[J]. Materials Science and Engineering: C, 2017, 72: 394-404.
doi: 10.1016/j.msec.2016.11.085 |
| [6] |
LEE J H, KWEON H, OH J H, et al. The optimal scaffold for silk sericin-based bone graft: collagen versus gelatin[J]. Maxillofacial Plastic and Reconstructive Surgery, 2023, 45(1): 2.
doi: 10.1186/s40902-022-00368-0 pmid: 36617599 |
| [7] |
SHI W L, SUN M Y, HU X Q, et al. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo[J]. Advanced Materials, 2017, 29(29): 1701089.
doi: 10.1002/adma.v29.29 |
| [8] |
TAHER MOHAMED S A, EMIN N. Effects of using collagen and aloe vera grafted fibroin scaffolds on osteogenic differentiation of rat bone marrow mesenchymal stem cells in SBF-enriched cell culture medium[J]. Biomedical Materials, 2024, 19(1): 015011.
doi: 10.1088/1748-605X/ad12e2 |
| [9] |
DUVAL K, GROVER H, HAN L H, et al. Modeling physiological events in 2D vs. 3D cell culture[J]. Physiology, 2017, 32(4): 266-277.
doi: 10.1152/physiol.00036.2016 |
| [10] |
QI Y, WANG H, WEI K, et al. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures[J]. International Journal of Molecular Sciences, 2017, 18(3): 237.
doi: 10.3390/ijms18030237 |
| [11] |
JAO D, MOU X Y, HU X. Tissue regeneration: a silk road[J]. Journal of Functional Biomaterials, 2016, 7(3): 22.
doi: 10.3390/jfb7030022 |
| [12] |
CAO T T, ZHANG Y Q. Processing and characterization of silk sericin from Bombyx Mori and its application in biomaterials and biomedicines[J]. Materials Science and Engineering: C, 2016, 61: 940-952.
doi: 10.1016/j.msec.2015.12.082 |
| [13] | KUNZ R I, BRANCALHÃO R M C, DE FÁTIMA CHASKO RIBEIRO L, et al. Silkworm sericin: properties and biomedical applications[J]. BioMed Research International, 2016(1): 8175701. |
| [14] | 拜凤姣, 王卉, 陈晓敏, 等. 丝素蛋白基纺织材料及其在生物医学领域的应用[J]. 材料导报, 2020, 34(7): 7154-7160. |
| BAI Fengjiao, WANG Hui, CHEN Xiaomin, et al. Silk fibroin-based textile materials and their application in biomedical field[J]. Materials Reports, 2020, 34(7): 7154-7160. | |
| [15] |
RAVI M, PARAMESH V, KAVIYA S R, et al. 3D cell culture systems: advantages and applications[J]. Journal of Cellular Physiology, 2015, 230(1): 16-26.
doi: 10.1002/jcp.24683 pmid: 24912145 |
| [16] |
SUN Y Q, MA H Y. Application of three-dimensional cell culture technology in screening anticancer drugs[J]. Biotechnology Letters, 2023, 45(9): 1073-1092.
doi: 10.1007/s10529-023-03410-x pmid: 37421554 |
| [17] |
BIJU T S, PRIYA V V, FRANCIS A P. Role of three-dimensional cell culture in therapeutics and diagnostics: an updated review[J]. Drug Delivery and Translational Research, 2023, 13(9): 2239-2253.
doi: 10.1007/s13346-023-01327-6 pmid: 36971997 |
| [18] | 李冉, 汪虹, 冷崇燕, 等. 天然高分子材料及其衍生物制备组织工程真皮支架的研究进展[J]. 中华烧伤杂志, 2016, 32(5): 316-318. |
|
LI Ran, WANG Hong, LENG Chongyan, et al. Advances in the research of natural polymeric materials and their derivatives in the manufacture of scaffolds for dermal tissue engineering[J]. Chinese Journal of Burns, 2016, 32(5): 316-318.
doi: 10.3760/cma.j.issn.1009-2587.2016.05.014 pmid: 27188491 |
|
| [19] |
JIANG L B, DING S L, DING W, et al. Injectable sericin based nanocomposite hydrogel for multi-modal imaging-guided immunomodulatory bone regenera-tion[J]. Chemical Engineering Journal, 2021, 418: 129323.
doi: 10.1016/j.cej.2021.129323 |
| [20] |
FAN H B, LIU H F, WONG E J W, et al. In vivo study of anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold[J]. Biomaterials, 2008, 29(23): 3324-3337.
doi: 10.1016/j.biomaterials.2008.04.012 |
| [21] | BI F G, CHEN Y D, LIU J Q, et al. Bone mesenchymal stem cells contribute to ligament regeneration and graft-bone healing after anterior cruciate ligament reconstruction with silk-collagen scaffold[J]. Stem Cells International, 2021, 2021: 6697969. |
| [22] | CHOUHAN D, JANANI G, CHAKRABORTY B, et al. Functionalized PVA-silk blended nanofibrous mats promote diabetic wound healing via regulation of extracellular matrix and tissue remodelling[J]. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(3): e1559-e1570. |
| [23] |
MATSUO T, KIMURA H, NISHIJIMA T, et al. Peripheral nerve regeneration using a bioresorbable silk fibroin-based artificial nerve conduit fabricated via a novel freeze-thaw process[J]. Scientific Reports, 2025, 15: 3797.
doi: 10.1038/s41598-025-88221-y |
| [24] | LU G Z, DING Z Z, WEI Y Y, et al. Anisotropic biomimetic silk scaffolds for improved cell migration and healing of skin wounds[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44314-44323. |
| [25] |
GUAN G P, BAI L, ZUO B Q, et al. Promoted dermis healing from full-thickness skin defect by porous silk fibroin scaffolds (PSFSs)[J]. Bio-Medical Materials and Engineering, 2010, 20(5): 295-308.
doi: 10.3233/BME-2010-0643 |
| [26] |
KARAHALILOGLU Z, KILICAY E, DENKBAS E B. Antibacterial chitosan/silk sericin 3D porous scaffolds as a wound dressing material[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 45(6): 1172-1185.
doi: 10.1080/21691401.2016.1203796 |
| [27] |
SHEN Y, WANG X Y, WANG Y Y, et al. Bilayer silk fibroin/sodium alginate scaffold promotes vascularization and advances inflammation stage in full-thickness wound[J]. Biofabrication, 2022, 14(3): 035016.
doi: 10.1088/1758-5090/ac73b7 |
| [28] | CHEN C S, ZENG F, XIAO X, et al. Three-dimensionally printed silk-sericin-based hydrogel scaffold: a promising visualized dressing material for real-time monitoring of wounds[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 33879-33890. |
| [29] |
BHARDWAJ N, KUNDU S C. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends[J]. Biomaterials, 2012, 33(10): 2848-2857.
doi: 10.1016/j.biomaterials.2011.12.028 pmid: 22261099 |
| [30] |
FITZPATRICK V, MARTÍN-MOLDES Z, DECK A, et al. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization[J]. Biomaterials, 2021, 276: 120995.
doi: 10.1016/j.biomaterials.2021.120995 |
| [31] | LUO Z W, JIANG L, XU Y, et al. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model[J]. Biomaterials, 2015, 52: 463-475. |
| [32] |
WANG Y Z, KIM U J, BLASIOLI D J, et al. In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells[J]. Biomaterials, 2005, 26(34): 7082-7094.
doi: 10.1016/j.biomaterials.2005.05.022 |
| [33] |
QI C, LIU J, JIN Y, et al. Photo-crosslinkable, injectable sericin hydrogel as 3D biomimetic extracellular matrix for minimally invasive repairing cartilage[J]. Biomaterials, 2018, 163: 89-104.
doi: S0142-9612(18)30094-2 pmid: 29455069 |
| [34] |
KUMAR P, JIMENEZ FRANCO A, ZHAO X B. 3D culture of fibroblasts and neuronal cells on microfabricated free-floating carriers[J]. Colloids and Surfaces B: Biointerfaces, 2023, 227: 113350.
doi: 10.1016/j.colsurfb.2023.113350 |
| [35] |
ESCOBAR A, CARVALHO M R, SILVA T H, et al. Longitudinally aligned inner-patterned silk fibroin conduits for peripheral nerve regeneration[J]. In Vitro Models, 2023, 2(5): 195-205.
doi: 10.1007/s44164-023-00050-3 pmid: 39872172 |
| [36] |
ZHANG S J, WANG J, ZHENG Z Z, et al. Porous nerve guidance conduits reinforced with braided composite structures of silk/magnesium filaments for peripheral nerve repair[J]. Acta Biomaterialia, 2021, 134: 116-130.
doi: 10.1016/j.actbio.2021.07.028 pmid: 34289421 |
| [37] |
LIU Y S, ZHANG Z Z, ZHANG Y J, et al. Construction of adhesive and bioactive silk fibroin hydrogel for treatment of spinal cord injury[J]. Acta Biomaterialia, 2023, 158: 178-189.
doi: 10.1016/j.actbio.2022.12.048 |
| [38] |
ZHAO C B. Cell culture: in vitro model system and a promising path to in vivo applications[J]. Journal of Histotechnology, 2023, 46(1): 1-4.
doi: 10.1080/01478885.2023.2170772 |
| [39] |
PAMPALONI F, REYNAUD E G, STELZER E H K. The third dimension bridges the gap between cell culture and live tissue[J]. Nature Reviews Molecular Cell Biology, 2007, 8(10): 839-845.
doi: 10.1038/nrm2236 pmid: 17684528 |
| [40] |
BAE Y J, JANG M J, UM I C. Silk/rayon webs and nonwoven fabrics: fabrication, structural characteristics, and properties[J]. International Journal of Molecular Sciences, 2022, 23(14): 7511.
doi: 10.3390/ijms23147511 |
| [41] | ZHOU W H, JIA Z J, XIONG P, et al. Bioinspired and biomimetic AgNPs/gentamicin-embedded silk fibroin coatings for robust antibacterial and osteogenetic applications[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 25830-25846. |
| [42] |
王曙东, 马倩, 王可, 等. 蚕丝蛋白/明胶复合水凝胶的结构与生物相容性[J]. 纺织学报, 2020, 41(11): 41-47.
doi: 10.13475/j.fzxb.20200301007 |
|
WANG Shudong, MA Qian, WANG Ke, et al. Structure and biocompatibility of silk fibroin/gelatin blended hydrogels[J]. Journal of Textile Research, 2020, 41(11): 41-47.
doi: 10.13475/j.fzxb.20200301007 |
|
| [43] | MEHRJOU B, MO S, DEHGHAN-BANIANI D, et al. Antibacterial and cytocompatible nanoengineered silk-based materials for orthopedic implants and tissue engineering[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 31605-31614. |
| [44] |
KIM E, SEOK J M, BAE S B, et al. Silk fibroin enhances cytocompatibilty and dimensional stability of alginate hydrogels for light-based three-dimensional bioprinting[J]. Biomacromolecules, 2021, 22(5): 1921-1931.
doi: 10.1021/acs.biomac.1c00034 |
| [45] | SHARMA A, RAWAL P, TRIPATHI D M, et al. Upgrading hepatic differentiation and functions on 3D printed silk-decellularized liver hybrid scaffolds[J]. ACS Biomaterials Science & Engineering, 2021, 7(8): 3861-3873. |
| [46] |
KUNDU B, SAHA P, DATTA K, et al. A silk fibroin based hepatocarcinoma model and the assessment of the drug response in hyaluronan-binding protein 1 overexpressed HepG2 cells[J]. Biomaterials, 2013, 34(37): 9462-9474.
doi: 10.1016/j.biomaterials.2013.08.047 pmid: 24016853 |
| [47] |
ABBOTT A, BOND K, CHIBA T, et al. Development of a mechanically matched silk scaffolded 3D clear cell renal cell carcinoma model[J]. Materials Science and Engineering: C, 2021, 126: 112141.
doi: 10.1016/j.msec.2021.112141 |
| [48] |
GHOLIPOURMALEKABADI M, SAPRU S, SAMADIKUCHAKSARAEI A, et al. Silk fibroin for skin injury repair: where do things stand[J]. Advanced Drug Delivery Reviews, 2020, 153: 28-53.
doi: 10.1016/j.addr.2019.09.003 |
| [49] |
FAROKHI M, MOTTAGHITALAB F, FATAHI Y, et al. Overview of silk fibroin use in wound dressings[J]. Trends in Biotechnology, 2018, 36(9): 907-922.
doi: S0167-7799(18)30117-3 pmid: 29764691 |
| [50] |
XU N, WANG L L, GUAN J J, et al. Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model[J]. International Journal of Biological Macromolecules, 2018, 117: 102-107.
doi: 10.1016/j.ijbiomac.2018.05.066 |
| [51] | HASATSRI S, ANGSPATT A, ARAMWIT P. Randomized clinical trial of the innovative bilayered wound dressing made of silk and gelatin: safety and efficacy tests using a split-thickness skin graft model[J]. Evidence-Based Complementary and Alternative Medicine, 2015, 2015(1): 206871. |
| [52] |
LIU J H, YAN L W, YANG W, et al. Controlled-release neurotensin-loaded silk fibroin dressings improve wound healing in diabetic rat model[J]. Bioactive Materials, 2019, 4: 151-159.
doi: 10.1016/j.bioactmat.2019.03.001 pmid: 30989151 |
| [53] |
BABA A, MATSUSHITA S, KITAYAMA K, et al. Silk fibroin produced by transgenic silkworms overexpressing the Arg-Gly-Asp motif accelerates cutaneous wound healing in mice[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2019, 107(1): 97-103.
doi: 10.1002/jbm.b.v107.1 |
| [54] |
WANG Y Y, WANG X Y, SHI J, et al. A biomimetic silk fibroin/sodium alginate composite scaffold for soft tissue engineering[J]. Scientific Reports, 2016, 6: 39477.
doi: 10.1038/srep39477 pmid: 27996001 |
| [55] |
ZHOU Y S, YANG H J, LIU X, et al. Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings[J]. International Journal of Biological Macromolecules, 2013, 53: 88-92.
doi: 10.1016/j.ijbiomac.2012.11.013 pmid: 23164753 |
| [56] |
GILOTRA S, CHOUHAN D, BHARDWAJ N, et al. Potential of silk sericin based nanofibrous mats for wound dressing applications[J]. Materials Science and Engineering: C, 2018, 90: 420-432.
doi: 10.1016/j.msec.2018.04.077 |
| [57] |
YAN S Q, ZHANG Q, WANG J N, et al. Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction[J]. Acta Biomaterialia, 2013, 9(6): 6771-6782.
doi: 10.1016/j.actbio.2013.02.016 pmid: 23419553 |
| [58] |
XIONG S, ZHANG X Z, LU P, et al. A gelatin-sulfonated silk composite scaffold based on 3D printing technology enhances skin regeneration by stimulating epidermal growth and dermal neovascularization[J]. Scientific Reports, 2017, 7: 4288.
doi: 10.1038/s41598-017-04149-y pmid: 28655891 |
| [59] |
XIE S Y, PENG L H, SHAN Y H, et al. Adult stem cells seeded on electrospinning silk fibroin nanofiberous scaffold enhance wound repair and regeneration[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(6): 5498-5505.
doi: 10.1166/jnn.2016.11730 |
| [60] |
HORAN R L, COLLETTE A L, LEE C, et al. Yarn design for functional tissue engineering[J]. Journal of Biomechanics, 2006, 39(12): 2232-2240.
pmid: 16182301 |
| [61] |
CHEN J S, ALTMAN G H, KARAGEORGIOU V, et al. Human bone marrow stromal cell and ligament fibroblast responses on RGD-modified silk fibers[J]. Journal of Biomedical Materials Research Part A, 2003, 67(2): 559-570.
pmid: 14566798 |
| [62] |
DING Z Z, CHENG W N, MIA M S, et al. Silk biomaterials for bone tissue engineering[J]. Macromolecular Bioscience, 2021, 21(8): 2100153.
doi: 10.1002/mabi.v21.8 |
| [63] |
SUN W Z, GREGORY D A, TOMEH M A, et al. Silk fibroin as a functional biomaterial for tissue engi-neering[J]. International Journal of Molecular Sciences, 2021, 22(3): 1499.
doi: 10.3390/ijms22031499 |
| [64] | 李婧. 丝素蛋白在骨组织工程中的应用进展[J]. 中国运动医学杂志, 2018, 37(11): 956-960. |
| LI Jing. Application progress of silk fibroin in bone tissue engineering[J]. Chinese Journal of Sports Medicine, 2018, 37(11): 956-960. | |
| [65] |
GOKILA S, GOMATHI T, VIJAYALAKSHMI K, et al. Development of 3D scaffolds using nanochitosan/silk-fibroin/hyaluronic acid biomaterials for tissue engineering applications[J]. International Journal of Biological Macromolecules, 2018, 120: 876-885.
doi: S0141-8130(18)33444-5 pmid: 30171951 |
| [66] |
MEINEL L, FAJARDO R, HOFMANN S, et al. Silk implants for the healing of critical size bone defects[J]. Bone, 2005, 37(5): 688-698.
doi: 10.1016/j.bone.2005.06.010 pmid: 16140599 |
| [67] |
JO Y Y, KWEON H, KIM D W, et al. Silk sericin application increases bone morphogenic protein-2/4 expression via a toll-like receptor-mediated pathway[J]. International Journal of Biological Macromolecules, 2021, 190: 607-617.
doi: 10.1016/j.ijbiomac.2021.09.021 |
| [68] |
LIU M, ZENG X, MA C, et al. Injectable hydrogels for cartilage and bone tissue engineering[J]. Bone Research, 2017, 5: 17014.
doi: 10.1038/boneres.2017.14 pmid: 28584674 |
| [69] |
WANG Y Z, BLASIOLI D J, KIM H J, et al. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes[J]. Biomaterials, 2006, 27(25): 4434-4442.
pmid: 16677707 |
| [70] |
ALTMAN G H, HORAN R L, LU H H, et al. Silk matrix for tissue engineered anterior cruciate liga-ments[J]. Biomaterials, 2002, 23(20): 4131-4141.
doi: 10.1016/S0142-9612(02)00156-4 |
| [71] |
HU H R, WANG L, XU B, et al. Construction of a composite hydrogel of silk sericin via horseradish peroxidase-catalyzed graft polymerization of poly-PEGDMA[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2020, 108(6): 2643-2655.
doi: 10.1002/jbm.b.v108.6 |
| [72] |
MING P Y, RAO P C, WU T L, et al. Biomimetic design and fabrication of sericin-hydroxyapatite based membranes with osteogenic activity for periodontal tissue regeneration[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 899293.
doi: 10.3389/fbioe.2022.899293 |
| [73] |
HE M, HU H R, WANG P, et al. Preparation of a bio-composite of sericin-g-PMMA via HRP-mediated graft copolymerization[J]. International Journal of Biological Macromolecules, 2018, 117: 323-330.
doi: S0141-8130(18)31581-2 pmid: 29842956 |
| [74] |
POONGODI R, CHEN Y L, YANG T H, et al. Bio-scaffolds as cell or exosome carriers for nerve injury repair[J]. International Journal of Molecular Sciences, 2021, 22(24): 13347.
doi: 10.3390/ijms222413347 |
| [75] |
YONESI M, GARCIA-NIETO M, GUINEA G V, et al. Silk fibroin: an ancient material for repairing the injured nervous system[J]. Pharmaceutics, 2021, 13(3): 429.
doi: 10.3390/pharmaceutics13030429 |
| [76] |
LU Q Q, ZHANG F, CHENG W N, et al. Nerve guidance conduits with hierarchical anisotropic architecture for peripheral nerve regeneration[J]. Advanced Healthcare Materials, 2021, 10(14): 2100427.
doi: 10.1002/adhm.v10.14 |
| [77] |
LI X H, ZHU X, LIU X Y, et al. The corticospinal tract structure of collagen/silk fibroin scaffold implants using 3D printing promotes functional recovery after complete spinal cord transection in rats[J]. Journal of Materials Science: Materials in Medicine, 2021, 32(4): 31.
doi: 10.1007/s10856-021-06500-2 |
| [1] | 高闻语, 陈诚, 奚晓玮, 邓林红, 刘杨. 改性丝素蛋白纤维增强胶原基角膜修复材料的制备及其性能[J]. 纺织学报, 2025, 46(08): 1-9. |
| [2] | 江淑宁, 杨海伟, 李长龙, 郑天亮, 王宗乾. 低共熔溶剂剥离法制备丝素蛋白纳米原纤及其成膜性能[J]. 纺织学报, 2025, 46(07): 1-9. |
| [3] | 于梦菲, 高文丽, 任婧, 曹雷涛, 彭若铉, 凌盛杰. 摩擦纳米发电机用皮芯结构纤维的制备及其性能[J]. 纺织学报, 2025, 46(05): 1-9. |
| [4] | 罗欣, 王磊, 王筱悠, 伍韬, 张贞贞, 张一帆. 丝素蛋白多级结构的自组装机制及其重构材料研究进展[J]. 纺织学报, 2025, 46(03): 225-235. |
| [5] | 詹克静, 杨鑫, 张应龙, 张昕, 潘志娟. 自凝聚丝素蛋白微纳米纤维膜的制备及其力学增强[J]. 纺织学报, 2025, 46(02): 10-19. |
| [6] | 杨柳, 杜磊, 徐淮中. 熔体近场直写制备组织工程支架的研究进展[J]. 纺织学报, 2025, 46(01): 206-216. |
| [7] | 杨鑫, 张昕, 潘志娟. 丝素纳米原纤增强再生丝素蛋白/聚乙烯醇纤维的结构与性能[J]. 纺织学报, 2024, 45(11): 1-9. |
| [8] | 李蒙, 戴梦男, 俞杨销, 王建南. 丝素蛋白基骨修复材料的应用研究进展[J]. 纺织学报, 2024, 45(10): 224-231. |
| [9] | 王勃翔, 徐航丹, 李佳, 林杰, 程德红, 路艳华. 柞蚕丝素纳米纤维温敏复合膜制备及其生物相容性[J]. 纺织学报, 2024, 45(09): 18-25. |
| [10] | 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26. |
| [11] | 张子凡, 李鹏飞, 王建南, 许建梅. 丝素蛋白载药纳米粒的研究进展[J]. 纺织学报, 2023, 44(10): 205-213. |
| [12] | 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10. |
| [13] | 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19. |
| [14] | 罗元泽, 戴梦男, 李蒙, 俞杨销, 王建南. 丝素蛋白基药物载体的应用研究进展[J]. 纺织学报, 2023, 44(09): 213-222. |
| [15] | 狄纯秋, 郭静, 管福成, 相玉龙, 单继成. 双金属离子交联海藻酸盐复合相变纤维的制备与性能[J]. 纺织学报, 2023, 44(05): 54-62. |
|
||