纺织学报 ›› 2025, Vol. 46 ›› Issue (10): 152-158.doi: 10.13475/j.fzxb.20250201601

• 染整工程 • 上一篇    下一篇

L-半胱氨酸/菠萝蛋白酶协同一浴法羊毛织物防毡缩整理

王司宇1, 王峰2, 王鸿博1, 苏静1()   

  1. 1.江南大学 纺织科学与工程学院, 江苏 无锡 214122
    2.江阴芗菲纺织科技有限公司, 江苏 无锡 214413
  • 收稿日期:2025-02-12 修回日期:2025-06-26 出版日期:2025-10-15 发布日期:2025-10-15
  • 通讯作者: 苏静(1991—),女,副教授,博士。主要研究方向为纺织生物技术与纺织品改性及功能化。E-mail:sujing@jiangnan.edu.cn
  • 作者简介:王司宇(2000—),女,硕士生。主要研究方向为功能纺织材料。
  • 基金资助:
    国家自然科学基金项目(52003108)

L-cysteine/bromelain synergistic one-bath process anti-shrinkage finishing of wool fabrics

WANG Siyu1, WANG Feng2, WANG Hongbo1, SU Jing1()   

  1. 1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. Jiangyin Xiangfei Textile Technology Co., Ltd., Wuxi, Jiangsu 214413, China
  • Received:2025-02-12 Revised:2025-06-26 Published:2025-10-15 Online:2025-10-15

摘要: 针对羊毛生物防毡缩整理中单一蛋白酶难以有效降解羊毛鳞片层以及二浴法工艺复杂的问题,为实现高效低损伤的羊毛织物防毡缩工业化整理,采用L-半胱氨酸与菠萝蛋白酶协同一浴一步法对羊毛织物进行防毡缩整理。通过毡缩率评价防毡缩性能,利用断裂强力和碱溶解度表征物理机械损伤,借助扫描电子显微镜分析羊毛表面微观形貌变化。结果表明:在L-半胱氨酸质量浓度为3.0 g/L、菠萝蛋白酶浓度为60 U/mL、处理温度为55 ℃、处理时间为90 min的条件下,L-半胱氨酸/菠萝蛋白酶协同体系可有效作用于羊毛的二硫键及肽键,显著促进鳞片层的剥离,防毡缩效果优异且强力损伤小;处理后的羊毛织物毡缩率由23.12%显著降至2.98%,断裂强力损失率为10.80%;微观形貌观察证实鳞片层被有效去除;此外,该工艺同步改善了织物的润湿性、染色性能及手感。

关键词: 防毡缩整理, 羊毛织物, L-半胱氨酸, 菠萝蛋白酶, 生物酶, 一浴法

Abstract:

Objective Wool fibers feature a scaly cuticle layer, rendering wool fabrics prone to felting shrinkage during washing, wet-heat treatment, or mechanical action. This felting results in dimensional shrinkage, stiff hand feel, and reduced elasticity, significantly compromising fabric quality. To overcome limitations of traditional methods, such as complex two-bath processes and significant fiber damage, this study explores a simplified, low-damage one-bath finishing approach. Specifically, we developed a novel, eco-friendly single-bath finishing process utilizing green agents L-cysteine and bromelain under mild conditions. This single-step process efficiently disrupts the wool scale structure, effectively balancing anti-felting performance with tensile strength retention. It also enhances functional properties like dyeability and wettability, while substantially streamlining processing and reducing chemical consumption.

Method Fabrics were initially degreased using sodium dodecyl sulfate. Subsequently, the degreased wool fabrics underwent a novel one-bath, one-step anti-felting treatment employing a solution containing L-cysteine and bromelain. To evaluate the treatment efficacy and potential fiber damage, we measured: felting shrinkage using an automatic shrinkage tester; breaking strength with a fabric strength tester; alkali solubility; and surface thiol content. Additionally, surface morphology was examined by scanning electron microscopy, and chemical structural changes were analyzed by Fourier transform infrared spectroscopy. Furthermore, fabric wettability, hand feel, and dyeing properties were characterized using a contact angle meter, fabric style tester, and computer color matching system, respectively.

Results The synergistic one-bath one-step system integrating L-cysteine (L-cys) and bromelain (BRM) effectively addressed the limitations of low efficiency in single-protease systems and operational complexity in conventional two-bath bio-anti-felting processes. Mechanistic studies confirmed that L-cys selectively cleaves disulfide bonds within the scale layer, creating reactive sites that significantly enhance the proteolytic accessibility of BRM. This sequential mechanism (disulfide reduction followed by peptide hydrolysis) enables thorough scale exfoliation of cuticle scales while preserving the wool fiber integrity. Performance metrics indicated that felting shrinkage decreased dramatically from 23.12% in untreated fabric to 2.98% in treated samples, accompanied by a controlled breaking strength loss of merely 10.80%. Quantitative biochemical analyses further validated the mechanism, where alkali solubility was increased from 13.41% to 18.30%, indicating modified keratin solubility due to structural disruption, while surface thiol content surged from (1.43 ± 0.05) μmol/mg to (3.42 ± 0.06) μmol/mg, providing direct evidence of disulfide bond cleavage and cooperative interaction between the agents. Morphological characterization via scanning electron microscopy corroborated efficient and uniform scale removal, with no observable fibrillation or cortical damage. Fourier transform infrared spectroscopy analysis confirmed that the treatment exclusively targeted disulfide bonds and surface-exposed peptide linkages with no irreversible hydrolysis of the keratin polypeptide backbone, thereby minimizing core fiber damage. Functionally, the process enhanced multiple fabric properties, with wettability improved markedly (contact angle reduced from 136° to 80° and wetting time shortened to 120 s), and dyeing performance intensified (dye uptake rates reached 88.11% for Lanasol Golden Yellow and 58.64% for Acid Red B, with corresponding K/S values substantially exceeding untreated controls). Tactile attributes were optimized (softness increased to 87.53, smoothness elevated to 79.04, stiffness reduced to 14.41). These multidimensional improvements demonstrate the system's capacity to deliver high-efficiency anti-felting with minimal fiber compromise while concurrently upgrading functional performance.

Conclusion This study establishes a synergistic L-cysteine/bromelain one-bath system that achieves low-damage anti-felting finishing for wool textiles. The mechanism involves L-cysteine-mediated selective disulfide bond cleavage in the scale layer, which exposes reactive sites for bromelain to hydrolyze peptide bonds. This sequential action enables profound scale exfoliation while maintaining the structural integrity of the fiber cortex, reducing felting shrinkage to 2.98% with only 10.80% breaking strength loss. Optimal parameters (3.0 g/L L-cysteine, 60 U/mL bromelain, pH 7.0, 55 ℃, 90 min) balance anti-felting efficacy and mechanical integrity. The treatment concurrently enhances functional properties of wool fabric, where alkali solubility is increased and thiol content confirms structural modification, while scale removal improves dye uptake and wettability with elevated softness and smoothness indicating improved hand feel. Compared to traditional two-bath or chemical-intensive methods, this one-bath approach simplifies production flows, eliminates hazardous reagents, and reduces environmental footprint. Consequently, the L-cysteine/bromelain system establishes an eco-efficient industrial bio-anti-felting strategy that delivers superior performance with minimal fiber damage, demonstrating strong potential for green textile applications.

Key words: anti-shrinkage finishing, wool fabric, L-cysteine, bromelain, bio-enzyme, one-bath process

中图分类号: 

  • TS195.56

图1

不同整理工艺对织物毡缩率和断裂强力的影响"

表1

不同整理工艺对织物碱溶解度的影响"

织物整理工艺 碱溶解度/%
原羊毛 13.41±0.23
BRM处理 13.93±0.31
L-cys处理 15.16±0.22
L-cys/BRM处理 18.30±0.41

表2

不同整理工艺对羊毛表面巯基含量的影响"

织物整理工艺 巯基含量/(μmol·mg-1)
原羊毛 1.43±0.05
BRM处理 1.53±0.04
L-cys处理 2.16±0.04
L-cys/BRM处理 3.42±0.06

图2

羊毛织物的SEM照片"

图3

不同整理工艺下羊毛织物的FT-IR图谱"

图4

不同整理工艺对羊毛织物上染率及K/S值的影响"

表3

不同整理工艺对羊毛织物润湿性的影响"

织物整理工艺 接触角/(°) 润湿时间/s
原羊毛 136 >1 800
L-cys处理 118 210
BRM处理 108 220
L-cys/BRM处理 80 120

表4

不同整理工艺对羊毛织物手感影响"

织物整理工艺 柔软度 光滑度 硬挺度
原羊毛 80.18 77.64 21.39
L-cys处理 84.71 77.99 17.93
BRM处理 84.69 77.73 17.09
L-cys/BRM处理 87.53 79.04 14.41
[1] 陶林敏. 无AOX防毡缩羊毛织物的研发[D]. 江苏: 苏州大学, 2022: 1-16.
TAO Linmin. Study on non-Aox anti-felting finishing of wool fabric[D]. Jiangsu: Soochow University, 2022: 1-16.
[2] 张腾飞. 基于蛋白酶K的羊毛剥鳞技术研究[D]. 上海: 东华大学, 2023: 23-26.
ZHANG Tengfei. Research on wool scale-peeling technology based on protease K[D]. Shanghai: Donghua University, 2023: 23-26.
[3] 范雪荣, 黄庞惠, 王强. 羊毛的酶法防毡缩整理综述[J]. 针织工业, 2015(3): 30-35.
FAN Xuerong, HUANG Panghui, WANG Qiang. Review on enzymatic anti-shrinking finishing of wool[J]. Knitting Industries, 2015(3): 30-35.
[4] 骆坚城, 栾文辉, 余圆圆, 等. 基于角蛋白酶-蛋白酶协同增效的酶法羊毛防缩加工[J]. 毛纺科技, 2023, 51(9): 43-50.
LUO Jiancheng, LUAN Wenhui, YU Yuanyuan, et al. Enzymatic anti-felting processing of wool based on keratin-protease synergism[J]. Wool Textile Journal, 2023, 51(9): 43-50.
[5] KAUR A, CHAKRABORTY J N. Controlled eco-friendly shrink-resist finishing of wool using bromelain[J]. Journal of Cleaner Production, 2015, 108: 503-513.
doi: 10.1016/j.jclepro.2015.07.147
[6] 王玉霞, 王强, 余圆圆, 等. 羊毛织物酶法与化学法防毡缩整理效果比较[J]. 毛纺科技, 2020, 48(5): 33-37.
WANG Yuxia, WANG Qiang, YU Yuanyuan, et al. Comparison of enzymatic and chemical anti-felting finishing effects on wool fabrics[J]. Wool Textile Journal, 2020, 48(5): 33-37.
[7] 黄庞慧. 多酶协同处理的羊毛防毡缩整理研究[D]. 无锡: 江南大学, 2014: 9-14.
HUANG Panghui. Study on anti-felting finishing of wool by multi-enzyme synergistic treatment[D]. Wuxi: Jiangnan University, 2014: 9-14.
[8] 李宇. 基于漆酶催化的酪氨酸接枝/交联羊毛改性及机理研究[D]. 无锡: 江南大学, 2022: 17-44.
LI Yu. Study on tyrosine grafting/crosslinking modification of wool and its mechanism based on laccase catalysis[D]. Wuxi: Jiangnan University, 2022: 17-44.
[9] ZHANG N, WANG Q, YUAN J, et al. Highly efficient and eco-friendly wool degradation by L-cysteine-assisted esperase[J]. Journal of Cleaner Production, 2018, 192: 433-442.
doi: 10.1016/j.jclepro.2018.05.008
[10] 余雪满. 氧化蛋白酶防毡缩整理对羊毛染色性能的影响[J]. 纺织科技进展, 2024, 46(4): 24-27.
YU Xueman. The influence of oxidative protease anti-felting treatment on wool dyeing performance[J]. Textile Science and Technology Progress, 2024, 46(4): 24-27.
[11] 沈之懿. 羊毛织物生物酶/等离子体处理比较及羊毛复合织物洗后性能研究[D]. 上海: 东华大学, 2022: 12-21.
SHEN Zhiyi. Comparison of bioenzyme/plasma treatment and post-wash performance of wool composite fabrics[D]. Shanghai: Donghua University, 2022: 12-21.
[12] 钟晨雅. 棉织物纤维素酶抛光技术研究[D]. 无锡: 江南大学, 2023: 10-24.
ZHONG Chenya. Study on cellulase polishing technology for cotton fabrics[D]. Wuxi: Jiangnan University, 2023: 10-24.
[13] 王佳忻. 化学辅助酶法羊毛织物防毡缩整理研究[D]. 无锡: 江南大学, 2024: 35-57.
WANG Jiaxin. Research on anti-shrinking finishing of wool fabrics by enzymatic method assisted by chemicals[D]. Wuxi: Jiangnan University, 2024: 35-57.
[1] 郭庆, 毛阳顺, 任亚杰, 刘济民, 王怀芳, 朱平. 基于漆酶一步催化法的羊毛织物原位染色及阻燃功能化[J]. 纺织学报, 2025, 46(02): 161-169.
[2] 梁志结, 罗正智, 程海兵, 贾维妮, 毛庆辉. 多钒酸盐催化氧化咖啡酸及其对羊毛织物的原位染色性能[J]. 纺织学报, 2023, 44(10): 98-103.
[3] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
[4] 黄宏博, 韩宗保, 郭恒, 姚金波, 姜会钰, 夏治刚, 王运利. 热湿处理对免烫羊毛织物保形性能的影响[J]. 纺织学报, 2021, 42(12): 119-124.
[5] 周慧玲, 朱俐莎, 吴雄英, 丁雪梅. 电雾化处理对羊毛织物抗起毛起球性能的影响[J]. 纺织学报, 2021, 42(10): 120-125.
[6] 张帆, 张国波, 赵宇新, 张儒, 阳海, 王世豪, 汪南方. 催化氧化皂洗在涤纶/棉织物一浴染色中的应用[J]. 纺织学报, 2021, 42(09): 97-103.
[7] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[8] 郑振荣, 智伟, 邢江元, 杜换福, 徐子健. 大麻纤维草酸铵-酶联合脱胶工艺[J]. 纺织学报, 2019, 40(11): 88-93.
[9] 张悦, 胡丹玲, 任金娜, 李青. 棉织物低温近中性一浴一步法练漂[J]. 纺织学报, 2019, 40(09): 83-90.
[10] 梅静霞, 张楠, 王强, 袁久刚, 范雪荣. 基于修饰蛋白酶的羊毛织物防毡缩整理[J]. 纺织学报, 2019, 40(06): 73-78.
[11] 安芳芳, 房宽峻, 刘秀明, 蔡玉青, 韩双, 杨海贞. 羊毛织物的蛋白酶改性对墨滴铺展及颜色性能的影响[J]. 纺织学报, 2019, 40(06): 58-63.
[12] 张淑梅 姬春林 殷秀梅 潘峰 毛鑫磊. 羊毛生物酶联合防毡缩整理[J]. 纺织学报, 2018, 39(11): 85-90.
[13] 任燕飞 巩继贤 付冉冉 张健飞 王富邦 陶宇庆. 微生物合成纳米灵菌红素及其对羊毛织物抗菌染色[J]. 纺织学报, 2018, 39(02): 91-96.
[14] 刘建勇 吴胜争 赵笑康. 生物酶协同催化体系及其对羊毛纤维的作用机制[J]. 纺织学报, 2018, 39(01): 71-78.
[15] 陈诚 贾丽霞 张初阳. 毛用防蛀萘醌色素的合成与性能评价[J]. 纺织学报, 2017, 38(10): 70-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!