纺织学报 ›› 2023, Vol. 44 ›› Issue (10): 98-103.doi: 10.13475/j.fzxb.20211002001

• 染整与化学品 • 上一篇    下一篇

多钒酸盐催化氧化咖啡酸及其对羊毛织物的原位染色性能

梁志结(), 罗正智, 程海兵, 贾维妮, 毛庆辉   

  1. 南通大学 纺织服装学院, 江苏 南通 226019
  • 收稿日期:2022-10-13 修回日期:2023-07-18 出版日期:2023-10-15 发布日期:2023-12-07
  • 作者简介:梁志结(1989—),女,讲师,博士。主要研究方向为多酸功能化纤维的制备及其功能性。E-mail:lzj@ntu.edu.cn
  • 基金资助:
    江苏省产学研合作项目(BY2022220)

Oxidation of caffeic acid and in-situ dyeing performance of wool fabrics catalyzed by polyoxovanadate

LIANG Zhijie(), LUO Zhengzhi, CHENG Haibing, JIA Weini, MAO Qinghui   

  1. School of Textile and Clothing, Nantong University, Nantong, Jiangsu 226019, China
  • Received:2022-10-13 Revised:2023-07-18 Published:2023-10-15 Online:2023-12-07

摘要:

为实现纺织品无染料显色目的,以K7[MnV13O38]·18H2O为催化剂,以咖啡酸为底物,采用一步一浴法对羊毛织物进行原位染色。以织物K/S值为考察指标,研究了催化剂用量、反应时间、反应温度、pH值以及添加剂聚乙二醇对催化反应的影响。探讨出最佳的工艺条件:0.9 g咖啡酸,0.9 g聚乙二醇1000,pH值为4.0,0.19 g多钒酸盐,温度为50 ℃,催化染色反应时间为5 h。此外,通过红外光谱仪、紫外-可见分光光度计、扫描电镜等对染色前后织物的结构和染色性能进行了表征,同时测试了染色织物的耐摩擦和耐皂洗色牢度。结果表明,K7[MnV13O38]·18H2O 对咖啡酸进行催化氧化,并对羊毛织物原位上染,染色织物K/S值达到20以上,颜色色相为黑色,染色后羊毛织物的耐干、湿摩擦色牢度及耐皂洗色牢度分别达到5级、4~5级及3级。

关键词: 多钒酸盐, 咖啡酸, 催化剂, 氧化反应, 染色, 羊毛织物

Abstract:

Objective The green dyeing and finishing method has attracted a lot of attention. At present, the main technology used for in situ dyeing is biological enzyme method. However, the biological enzyme is generally expensive and the preservation condition is harsh, so it is important to find a new way to achieve dye-free dyeing for textile. In this work, the in situ catalytic dyeing of wool fabric was carried out by using K7[MnV13O38]·18H2O as catalyst and caffeic acid as substrate. Besides, the polymer was applied for wool in-situ dyeing to achieve coloring effect.

Method The in-situ dyeing process was performed by one-step one-bath method. Factors such as reaction time, temperature, polyoxometalate concentration and pH value as well as the polyethylene glycol were studied for their effects on dyeing. Consequently, the dyeing property and structure of the dyed wool was characterized and analyzed by color parameter, color fastness test and fourier-transform infrared spectrum, scanning electron microscope, UV-vis spectrum, respectively.

Results Based on the K/S value, the optimum conditions are obtained, namely, 0.9 g caffeic acid, 0.9 g polyethylene glycol 1000, pH = 4.0 acetic acid-potassium acetate buffer, 0.19 g polyoxometalate with temperature of 50 ℃ and reaction time 5 h (Fig. 4-7). The infrared spectra of polyoxometalate, caffeic acid, precipitations and dyed wool after dyeing reaction are contrasted (Fig. 1). The peak at 958 cm-1 and the peaks in the range of 800-500 cm-1 for crystals indicate that the catalyst is synthesized successfully. After the reaction, a large amount of black precipitate was produced in the bottle. In contrast, the peaks in the range of 3 600-2 500 cm-1 indicate that the caffeic acid is polymerized after the reaction, and the polymer has strong hydrogen bond, while the peaks at 1 264 cm-1, 1 086 cm-1 and 1 023 cm-1 indicate the formation of ether bonds in polymer. Besides, there are broad peaks in the spectrum of dyed wool similar to precipitate in the range of 3 600-3 000 cm-1, and small peaks at 1 210 cm-1 and 1 084 cm-1 indicate the existence of polymer on the fabric surface.

The UV-vis spectrum of solution with different reaction time is obtained (Fig. 2), showing a strong peak at 293 nm, which is assigned to R band of benzene ring. Besides, the absorbance reaches minimum at 5 h, indicating that the polymer load most on the fabric, which is consistent with the results of K/S value of the fabric. The appearance of wool fabric before and after reaction is measured by SEM and cross-section of fiber (Fig. 3), indicating the better dyeing effect of the method. In addition, the wool fabric has a deep dyeing depth and appears black (Fig. 8). The color fastnesses on rubbing stress under dry and wet conditions are very well and reach 5 and 4-5, respectively. The color fastness on washing can reach 3 (Tab. 2).

Conclusion Polyoxometalate is chosen to be a catalyst for the oxidative polymerization of caffeic acid to produce polymeric colorants for the dyeing of wool, showing a dark black color. The colored wool is characterized well. The influence of five factors, including pH, reaction time, temperature, polyoxometalate concentration and polyethylene glycol, is evaluated on the K/S value of dyed wool. Additionally, the dyed wool exhibits good color fastnesses on rubbing stress and washing, which can be attributed to the polycaffeic acid coating and the strong covalent binding between polymer and wool. Importantly, the dyed wool undergoing chemical reaction remains the apparent feature. These good characteristics make the dyeing strategy a promising candidate for textile dyeing. Therefore, this study could lead to the successful development of catalyst for dyeing process.

Key words: polyoxovanadate, caffeic acid, catalyst, oxidation reaction, dyeing, wool fabric

中图分类号: 

  • TS135.5

图1

试样的红外光谱图"

图2

不同反应时间的溶液稀释5 000倍后的紫外-可见光谱图"

图3

羊毛织物的扫描电镜照片和染色羊毛纤维横截面照片"

图4

不同pH值条件下染色羊毛织物的K/S值"

图5

不同时间下染色羊毛织物的K/S值"

图6

不同温度下染色羊毛织物的K/S值"

图7

不同反应条件下染色羊毛织物的K/S值"

表1

原羊毛织物与染色羊毛织物的颜色参数"

样品 K/S L* a* b*
原羊毛织物 0.36 81.86 -1.08 8.67
催化染色羊毛织物 25.27 15.26 -0.73 -0.16

图8

原羊毛织物及原位染色后的羊毛织物图片"

表2

染色羊毛织物色牢度"

耐皂洗色牢度 耐摩擦色牢度
褪色 棉沾 毛沾 干摩 湿摩
3 4~5 4~5 5 4~5

图9

皂洗过程中所用织物照片"

[1] LAI Q S, LI X X, ZHENG S T. All-inorganic POM cages and their assembly: a review[J]. Coordination Chemistry Reviews, 2023. DOI: 10.1016/j.ccr.2023.215077.
[2] LI K, ZHU K L, CUI L P, et al. Insights into the self-assembly of giant polyoxomolybdates from building blocks to supramolecular structures[J]. Dalton Transactions, 2023. DOI: 10.1039/D3DT00105A.
[3] LIU G, CHEN Y, CHRN Y, et al. Indirect electrocatalysis S-N/S-S bond construction by robust polyoxometalate Based Foams[J]. Advanced Materials, 2023. DOI: 10.1002/adma.202304716.
[4] MIRAS H N, YAN J, LONG D L, et al. Engineering polyoxometalates with emergent properties[J]. Chemical Society Reviews, 2012, 41: 7403-7430.
doi: 10.1039/c2cs35190k pmid: 22858601
[5] WANG S S, YANG G Y. Recent advances in polyoxometalate-catalyzed reactions[J]. Chemical Reviews, 2015, 115: 4893-4962.
doi: 10.1021/cr500390v
[6] BALAKSHIN M Y, EVTUGUIN D V, PASCOAL N C, et al. Polyoxometalates as mediators in the laccase catalyzed delignification[J]. Journal of Molecular Catalysis B: Enzymatic, 2001, 16: 131-140.
doi: 10.1016/S1381-1177(01)00054-6
[7] CASTRO A I R P, EVTUGUIN D V, XAVIER A M B. Degradation of biphenyl lignin model compounds by laccase of Trametes versicolor in the presence of 1-hydroxybenzotriazole and heteropolyanion [SiW11VO40]5-[J]. Journal of Molecular Catalysis B: Enzymatic, 2003, 22: 13-20.
doi: 10.1016/S1381-1177(02)00309-0
[8] GASPAR A R, EVTUGUIN D V, PASCOAL N C. Polyoxometalate-catalyzed oxygen delignification of kraft pulp: a pilot-plant experience[J]. Industrial and Engineering Chemistry Research, 2004, 43: 7754-7761.
doi: 10.1021/ie040061w
[9] GAMELAS J A F, TAVARES A P M, EVTUGUIN D V, et al. Oxygen bleaching of kraft pulp with polyoxometalates and laccase applying a novel multi-stage process[J]. Journal of Molecular Catalysis B: Enzymatic, 2005, 33: 57-64.
doi: 10.1016/j.molcatb.2005.03.001
[10] GAMELAS J A F, PONTES A S N, EVTUGUIN D V, et al. New polyoxometalate-laccase integrated system for kraft pulp delignification[J]. Biochemical Engineering Journal, 2007, 33: 141-147.
doi: 10.1016/j.bej.2006.10.014
[11] KIM S, SILVA C, EVTUGUIN D V, et al. Polyoxometalate/laccase-mediated oxidative polymeri-zation of catechol for textile dyeing[J]. Applied Microbiology and Biotechnology, 2011, 89: 981-987.
doi: 10.1007/s00253-010-2932-5
[12] 梁志结, 贾维妮, 侍超. 钒多酸/漆酶体系催化邻苯二酚的聚合及其原位染色[J]. 化学研究, 2022, 33(2), 158-163.
LIANG Zhijie, JIA Weini, SHI Chao. Polyoxovanadate/laccase-mediated oxidative polymerization of catechol and in situ textile dyeing[J]. Chemical Research, 2022, 33(2): 158-163.
[13] JR FLYNN C M, POPE M T. 1:13 Heteropolyvanadates of manganese(Ⅳ) and nickel(Ⅳ)[J]. Journal of the American Chemical Society, 1970, 92: 85-90.
doi: 10.1021/ja00704a014
[14] LAN Q, TAN H, LIU D, et al. A series of inorganic aggregates composed of [MnV13O38]7- polyoxoanions and transition metal cations[J]. Journal of Solid State Chemistry, 2013, 199: 129-133.
doi: 10.1016/j.jssc.2012.12.005
[15] LIUDVINAVICIUTE D, RUTKAITE R, BENDORAITIENE J, et al. Adsorption of caffeic acid on chitosan powder[J]. Polymer Bulletin, 2021, 78: 2139-2154.
doi: 10.1007/s00289-020-03205-4
[16] 解如阜. 纺织助剂的红外光谱分析[J]. 印染助剂, 1984(2): 28-38.
XIE Rufu. Infrared spectrum analysis of textile auxiliaries[J]. Textile Auxiliaries, 1984(2): 28-38.
[17] BAI R, YU Y, WANG Q, et al. Laccase-catalyzed poly(ethyleneglycol)-templated 'zip' polymerization of caffeic acid for functionalization of wool fabrics[J]. Journal of Cleaner Production, 2018, 191: 48-56.
doi: 10.1016/j.jclepro.2018.04.213
[1] 姜绍华, 梁帅童, 裴刘军, 张红娟, 王际平. 基于概率密度函数的织物染色侵入动力学分析[J]. 纺织学报, 2023, 44(10): 90-97.
[2] 连丹丹, 王镭, 杨雅茹, 尹立新, 葛超, 卢建军. 服用聚苯硫醚纤维的制备及其性能[J]. 纺织学报, 2023, 44(08): 1-8.
[3] 韩博, 王玉霖, 舒大武, 王涛, 安芳芳, 单巨川. 活性染料染色废水的循环染色[J]. 纺织学报, 2023, 44(08): 151-157.
[4] 郭玉秋, 钟毅, 徐红, 毛志平. 拼混活性染料染色多组分定量分析方法[J]. 纺织学报, 2023, 44(07): 141-150.
[5] 唐奇, 柴丽琴, 徐天伟, 王成龙, 王直成, 郑今欢. 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学[J]. 纺织学报, 2023, 44(06): 129-136.
[6] 关振虹, 李丹, 宋金苓, 冷向阳, 宋西全. 易染间位芳纶的制备及其性能[J]. 纺织学报, 2023, 44(06): 28-32.
[7] 吴伟, 纪柏林, 毛志平. 活性及分散染料染色新技术[J]. 纺织学报, 2023, 44(05): 1-12.
[8] 艾丽, 朱亚伟. 液体分散染料研发技术现状及其应用前景[J]. 纺织学报, 2023, 44(05): 220-227.
[9] 易菁源, 裴刘军, 朱赫, 张红娟, 王际平. 非水介质染色体系中分散染料对涤纶/棉混纺织物的沾色研究[J]. 纺织学报, 2023, 44(05): 29-37.
[10] 王小艳, 马子婷, 许长海. 基于高耐碱高耐氧漂分散染料的涤盖棉织物漂染一浴加工工艺[J]. 纺织学报, 2023, 44(05): 38-45.
[11] 宋洁, 蔡涛, 郑福尔, 郑环达, 郑来久. 涤纶针织鞋材超临界CO2无水染色性能[J]. 纺织学报, 2023, 44(05): 46-53.
[12] 贾维妮, 王涛, 鲍杰, 梁志结, 王海峰. 基于漆酶催化角蛋白头发纤维生物修复染色[J]. 纺织学报, 2023, 44(04): 108-114.
[13] 钱红飞, KOBIR MD. Foysal, 陈龙, 李林祥, 方帅军. 聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混纤维的结构及其织物染色性能[J]. 纺织学报, 2023, 44(03): 104-110.
[14] 齐迪, 丁洪, 王祥荣. 儿茶素络合染料的制备及其对蚕丝织物的染色性能[J]. 纺织学报, 2023, 44(03): 111-118.
[15] 贾艳梅, 于学智. 柞叶染料对柞蚕丝织物的染色及其吸附动力学研究[J]. 纺织学报, 2023, 44(03): 119-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!