纺织学报 ›› 2025, Vol. 46 ›› Issue (10): 265-273.doi: 10.13475/j.fzxb.20250302002

• 综合述评 • 上一篇    下一篇

智能可穿戴健康纺织品应用研究进展

王莎莎1,2,3, 李超婧1,2,3, 李彦1,2,3, 毛吉富1,2,3(), 王富军1,2,3, 王璐1,2,3   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织面料技术教育部重点实验室, 上海 201620
    3.东华大学 上海市现代纺织前沿科学研究基地, 上海 201620
  • 收稿日期:2025-03-12 修回日期:2025-07-24 出版日期:2025-10-15 发布日期:2025-10-15
  • 通讯作者: 毛吉富(1986—),男,研究员,博士。主要研究方向为生物医用纺织材料。E-mail:jifu.mao@dhu.edu.cn
  • 作者简介:王莎莎(1998—),女,博士生。主要研究方向为植入式储能及智能可穿戴技术。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2232022A-05)

Research progress in applications of smart wearable textiles for healthcare

WANG Shasha1,2,3, LI Chaojing1,2,3, LI Yan1,2,3, MAO Jifu1,2,3(), WANG Fujun1,2,3, WANG Lu1,2,3   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    3. Shanghai Frontiers Science Center of Advanced Textiles, Donghua University, Shanghai 201620, China
  • Received:2025-03-12 Revised:2025-07-24 Published:2025-10-15 Online:2025-10-15

摘要:

基于纤维、纱线和纺织品的可穿戴技术为实现具有多功能和可扩展的健康设备提供了理想的解决方案。为深入研究智能可穿戴健康纺织品的发展,探讨了其在人体生理健康监测、智能交互技术与可穿戴计算、疾病治疗和特殊人群及健康追踪与管理方面的应用。通过系统综述最新研究进展,旨在深化对纺织品在健康领域应用的理解。其目标是推动下一代智能可穿戴纺织品的设计和创新治疗方案的开发。总结认为:各种形式的智能纺织品正在成为未来个性化医疗保健的重要组成部分,下一代智能纺织品将彻底改变医疗保健和可持续发展的可穿戴技术。指出未来研究方向为:开发新材料和新结构以提升耐洗性和确保可重复使用性;电子系统的进一步小型化及优化界面工程;集成新型纺织结构;研发高效的加工技术;构建完全集成的个性化医疗保健解决方案,实现闭环健康管理及远程患者护理。

关键词: 智能纺织品, 可穿戴系统, 健康监测, 疾病治疗, 医疗保健

Abstract:

Significance Wearable healthcare systems have emerged as important candidates that can seamlessly collect and track user biodata. Textiles have attracted much attention due to their material and structural engineering advantages, as well as their unique mechanical properties, scalability and breathability, expanding from one-dimensional fibers to two-dimensional fabrics and three-dimensional structures, laying the foundation for the development of smart wearable health textiles. Such textiles not only provide a powerful tool for remote health monitoring and personal health management through regular and continuous monitoring of a wide range of physical, electrophysiological and biochemical signals. In addition, these devices show great potential for applications in the fields of preventive medicine, disease diagnosis, rehabilitation therapy, and daily health management. It is foreseeable that smart wearable textiles have the potential to revolutionize personalized medical monitoring and precise treatment, becoming central to numerous healthcare applications. This review comprehensively overviews recent progress in smart textiles for wearable healthcare applications, aiming to inspire innovative device designs and treatment protocols for future medical technologies.

Progress Wearable technologies based on fibers, yarns, and textiles offer ideal solutions for enabling multifunctional and scalable health devices. Analysis of healthcare sensing textiles is carried out for electrophysiological, biophysical, biochemical signals monitoring and discussion representative applications. Advances in electrode design, materials, and structures for bioelectronic devices have enabled real-time monitoring of variations in physiological signals. Wearable robots are a hot topic for future development of textile devices. The development of human-machine interaction and emotion recognition technologies within the textiles are also introduced. The application of big data and machine learning to textiles enables the restoration of haptic sensation in patients with neurological or degenerative diseases, as well as the real-time management and adjustment of emotional well-being. Subsequently, the types of therapeutic approaches adopted by wearable textiles are examined, such as physiotherapy include phototherapy, thermotherapy, electrotherapy, and ultrasound treatments and drug delivery. Miniaturization and excellent biocompatibility of materials are reported to be prerequisites for these functions. In addition, the article outlines the applications in various special populations. Smart wearable textiles have emerged as a crucial solution for monitoring users' biometric data and offering intelligent feedback and management. Smart wearable textiles have found a place in numerous domains, promising to reshape industries from medical care and prevention to robotics.

Conclusion and Prospect Overall, advances in materials manufacturing technology, surface engineering, textile structural design and multifunctional integration have greatly contributed to the development of smart wearables. Although significant progress has been made in the healthcare of wearable smart textiles, there are still some challenges for future development. New materials and structures should be developed to improve washability and ensure reusability, and further miniaturizing electronics and optimizing the interface engineering of systems are necessary to maintain stable contact between the skin and bioelectrodes, thus promoting prolonged wearability. In parallel, integrating with novel textile structures, such as three-dimensional woven structures, which inherently offer flexibility, robustness, porosity, and durability, is expected to enhance performance for healthcare applications. In addition, efficient processing technologies should be developed to enable scalable, and automated production. Large-scale production is also a key stage in the widespread adoption of wearable devices. Currently, most wearable devices rely on time-consuming fabrication techniques and sophisticated equipment with limited scale. There is a need for corresponding automated production platforms for continuous manufacturing, which requires a concerted effort between the fields of materials science and machine automation. Lastly, the establishment of a fully integrated personalized healthcare system is essential to encompass diagnostic technology, treatment platforms, power supply networks, communication relays, and computing resources to facilitate closed-loop health management and remote patient care. The multidisciplinary nature of smart textiles in personalized medicine demands joint efforts among materials scientists, textile and clothing industry experts, regulatory bodies, clinicians, patients, user-interface developers, and government entities to optimize future development and integration.

Key words: smart textile, wearable system, health monitoring, disease treatment, healthcare

中图分类号: 

  • TS106.67

表1

纺织基可穿戴人体健康监测材料与应用总结"

材料 制备方法 工作机制 检测范围或灵敏度 检测对象 应用 参考文献
CNT纤维 化学气相
沉积法
电化学传感 1 pmol/L ~10 μmol/L 汗液中的皮质醇 检测压力水平、焦虑症或抑郁症辅助诊断 [12]
TiO2-Ag-TiO2
TPU织物
纳米转移
打印
SERS检测 <150 μmol/L 汗液中的葡萄糖 糖尿病管理,运动员代谢状态分析 [26]
MXene棉织物 溶液喷涂 气动压力
传感
约12 cm/s 心电图、肌电图 心血管疾病
神经肌肉疾病
[16]
MXene/CNT/TPU纤维 静电纺丝
和喷涂
应变传感 应变为 485% 时的应变因子达到63 494 心电图、肌电图、脑电图 癫痫发作预警、睡眠呼吸暂停综合征分析 [25]
CNT/PU 超细
纤维
静电纺丝、
涂层
应变传感 0.007 5%~700%,
<40 Hz
脉搏和呼吸、人体肢体行为和人体运动分析 睡眠分期、鼾症检测 [11]
镀银聚酰胺导电纱/涤纶/棉织物 刺绣 压力传感 灵敏度:约0.024 kPa-1
响应时间:35 ms
恢复时间:16 ms
足底压力、关节和肌肉运动、声带振动、颈部扭转、吞咽和颈动脉脉搏 跑步姿态矫正、足底筋膜炎预防、术后发声功能重建 [24]
MXene改性锦纶织物 浸涂 应变传感 范围:0.2%~30%
灵敏度:43.2%
躺卧姿势、闭眼状态、呼吸信号 防跌倒监测、长期卧床患者压疮预警 [27]

表2

纺织基智能交互技术与可穿戴计算应用总结"

材料 制备方法 机器学习模型 应用 参考文献
MXene棉织物 喷涂 卷积神经网络 肌电图监测、手势识别 [16]
Ag-PET织物 低温固化、丝网
印刷和激光雕刻
卷积神经网络 语音捕获、关节运动监测、呼吸和步行压力
检测、空中手势识别和非接触式手势通信
[30]
镀银导电纱
涤纶/棉织物
机织 卷积神经网络 识别手写数字 [24]
PEDOT:PSS-PDMS
薄膜
离子刻蚀、激光切割 卷积神经网络 面部表情和语音采集 [32]
CNT棉织物 喷涂 神经网络 无线心血管监测 [34]
石墨烯织物 熔融纺丝、卷对卷浸
涂、多轴缠绕、针织
一维卷积神经网络 人体运动监测 [35]

表3

纺织基可穿戴健康干预和疾病治疗应用总结"

材料 制备方法 性能 治疗方式 应用 参考文献
MXene织物 浸涂 6 V 的输入电压下织物达到最高温度约为 100 ℃ 热疗 缓解肌肉痉挛和关节损伤促进伤口愈合 [41]
TiO2-Ag-TiO2TPU
织物
纳米转移打印 对大肠埃希菌和金黄色葡萄球菌抗菌活性99.9% 光疗 杀菌面罩、医用服装 [26]
MoO3-Al织物 热蒸发,旋涂 胆红素水平在光照3 h后降至12 mg/dL 光疗 治疗新生儿黄疸 [40]
碳纱线-天丝纱 机织 疼痛明显减轻 电疗 缓解膝关节疼痛 [43]
Alg-PEGDA-碳墨水
棉线
微流体纺丝 伤口床中肉芽组织沉积增加
3倍以上
药物递送 治疗慢性伤口 [46]
Alg/PAAS-姜黄素
织物
微流体纺丝,机织 加速伤口愈合率 药物递送 伤口愈合 [49]

表4

用于特殊人群及健康追踪与管理的纺织基可穿戴设备总结"

材料 制备方法 性能 适应人群或应用 参考文献
BC/CNT螺旋纤维 湿法纺丝 拉伸应变高达1 133%
电流响应速率104%/s
婴儿、智能纸尿裤或水位监测 [52]
Ca-PSS/MOF T恤 浸涂 防护服温度从36.5 ℃ 降至31.6 ℃ 消防员、降温防护服 [51]
不锈钢纱、涤纶和锦纶纱 模具拉伸,针织 灵敏度:7.84 mV/Pa
响应时间:20 ms
心血管疾病人群、睡眠呼吸暂停综合征患者、脉搏和呼吸监测 [55]
羊毛针织物 离子刻蚀,横机编织 可直观反映温度、紫外线辐射和汗液中的 pH 值,袖子长度减少,宽度增加 个人热管理和健康监测 [58]
[1] YANG Y, LIU Y, YIN R. Fiber/yarn and textile-based piezoresistive pressure sensors[J]. Advanced Fiber Materials, 2025, 7(1): 34-71.
doi: 10.1007/s42765-024-00479-5
[2] TAT T, CHEN G, ZHAO X, et al. Smart textiles for healthcare and sustainability[J]. Acs Nano, 2022, 16(9): 13301-13313.
doi: 10.1021/acsnano.2c06287 pmid: 35969207
[3] LIU S, ZHANG W, HE J, et al. Fabrication techniques and sensing mechanisms of textile-based strain sensors: from spatial 1d and 2d perspectives[J]. Advanced Fiber Materials, 2024, 6(1): 36-67.
doi: 10.1007/s42765-023-00338-9
[4] LIBANORI A, CHEN G, ZHAO X, et al. Smart textiles for personalized healthcare[J]. Nature Electronics, 2022, 5(3): 142-56.
doi: 10.1038/s41928-022-00723-z
[5] SHI Y, YANG P, LEI R, et al. Eye tracking and eye expression decoding based on transparent, flexible and ultra-persistent electrostatic interface[J]. Nature Communications, 2023. DOI: 10.1038/s41467-023-39068-2.
[6] HUANG B, WANG Q, LI W, et al. Stretchable and body conformable electronics for emerging wearable therapies[J]. Interdisciplinary Medicine, 2024, 3(1): 1-11.
[7] 董凯, 吕天梅, 盛非凡, 等. 面向个性化健康医疗的智能纺织品研究进展[J]. 纺织学报, 2024, 45(1): 240-249.
DONG Kai, LÜ Tianmei, SHENG Feifan, et al. Advances in smart textiles oriented to personalized healthcare[J]. Journal of Textile Research, 2024, 45(1): 240-249.
doi: 10.1177/004051757504500309
[8] 唐文杨, 陈定伟, 吴展鹏, 等. 医疗大健康用纺织品研究现状与发展趋势[J]. 棉纺织技术, 2023, 51(10): 14-24.
TANG Wenyang, CHEN Dingwei, WU Zhanpeng, et al. Research status and development trend of medical and health textiles[J]. Cotton Textile Technology, 2023, 51(10): 14-24.
[9] YIN Z, LU H, GAN L, et al. Electronic fibers/textiles for health-monitoring: fabrication and application[J]. Advanced Materials Technologies, 2023, 8(3): 2200654.
doi: 10.1002/admt.v8.3
[10] LU W, WU G, GAN L, et al. Functional fibers/textiles for smart sensing devices and applications in personal healthcare systems[J]. Analytical Methods, 2024, 16(31): 5372-90.
doi: 10.1039/D4AY01127A
[11] GAO J, FAN Y, ZHANG Q, et al. Ultra-robust and extensible fibrous mechanical sensors for wearable smart healthcare[J]. Advanced Materials, 2022, 34(20): 2107511.
doi: 10.1002/adma.v34.20
[12] HU X, CHEN Y, WANG X, et al. Wearable and regenerable electrochemical fabric sensing system based on molecularly imprinted polymers for real-time stress management[J]. Advanced Functional Materials, 2024, 34(14): 2312897.
doi: 10.1002/adfm.v34.14
[13] ZHOU L, LI C, LUO Y, et al. An autonomous fabric electrochemical biosensor for efficient health moni-toring[J]. National Science Review, 2025. DOI: 10.1093/nsr/nwaf155.
[14] HU S, SONG J, TIAN Q, et al. Mechanically and conductively robust eutectogel fiber produced by continuous wet spinning enables epidermal and implantable electrophysiological monitoring[J]. Advanced Fiber Materials, 2024, 6(6): 1980-1991.
doi: 10.1007/s42765-024-00470-0
[15] ZENG Q, TIAN X, NGUYEN D, et al. A digitally embroidered metamaterial biosensor for kinetic environments[J]. Nature Electronics, 2024, 7(11): 1-10.
doi: 10.1038/s41928-024-01123-1
[16] LEE S, HO D, JEKAL J, et al. Fabric-based lamina emergent MXene-based electrode for electrophysiological monitoring[J]. Nature Communications, 2024, 15(1): 1-12.
doi: 10.1038/s41467-023-43650-z
[17] PENG Y, DONG J, ZHANG Y, et al. Thermally comfortable epidermal bioelectrodes based on ultrastretchable and passive radiative cooling e-textiles[J]. Nano Energy, 2024, 120(1): 2211-2855.
[18] DONG J, PENG Y, ZHANG Y, et al. Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring[J]. Nano-Micro Letters, 2023. DOI: 10.1007/s40820-023-01156-9.
[19] PARK H, KIM J, HONG S, et al. Dynamically stretchable supercapacitor for powering an integrated biosensor in an all-in-one textile system[J]. Acs Nano, 2019, 13(9): 10469-10480.
doi: 10.1021/acsnano.9b04340 pmid: 31461268
[20] ZHAO P, SONG Y, HU Z, et al. Artificial intelligence enabled biodegradable all-textile sensor for smart monitoring and recognition[J]. Nano Energy, 2024. DOI: 10.1016/j.nanoen.2024.110118.
[21] KIM Y, PARK J, KWON Y, et al. Fabrication of highly conductive graphene/textile hybrid electrodes via hot pressing and their application as piezoresistive pressure sensors[J]. Journal of Materials Chemistry C, 2022, 10(24): 9364-9376.
doi: 10.1039/D2TC00165A
[22] LI Y, GAO Y, LAN L, et al. Ultrastretchable and wearable conductive multifilament enabled by buckled polypyrrole structure in parallel[J]. Npj Flexible Electronics, 2022, 6(1): 1-11.
doi: 10.1038/s41528-022-00133-3
[23] LAI Y, LU H, WU H, et al. Elastic multifunctional liquid-metal fibers for harvesting mechanical and electromagnetic energy and as self-powered sensors[J]. Advanced Energy Materials, 2021, 11(18): 1-10.
[24] YANG Y, CHEN Y, LIU Y, et al. Programmable and scalable embroidery textile resistive pressure sensors for integrated multifunctional smart wearable systems[J]. Advanced Fiber Materials, 2025. DOI: 10.1007/s42765-024-00506-5.
[25] HAO Y, YAN Q, LIU H, et al. A stretchable, breathable, and self-adhesive electronic skin with multimodal sensing capabilities for human-centered healthcare[J]. Advanced Functional Materials, 2023, 33(44): 2303881.
doi: 10.1002/adfm.v33.44
[26] HA J, KO J, AHN J, et al. Nanotransfer printing of functional nanomaterials on electrospun fibers for wearable healthcare applications[J]. Advanced Functional Materials, 2024, 34(33): 2401404.
doi: 10.1002/adfm.v34.33
[27] PENG J, CHENG H, LIU J, et al. Superhydrophobic MXene-based fabric with electromagnetic interference shielding and thermal management ability for flexible sensors[J]. Advanced Fiber Materials, 2023, 5(6): 2099-2113.
doi: 10.1007/s42765-023-00328-x
[28] XU G, WANG H, ZHAO G, et al. Self-powered electrotactile textile haptic glove for enhanced human-machine interface[J]. Science Advances, 2025. DOI: 10.1126/sciadv.adt0318.
[29] CHENG A, LI X, LI D, et al. An intelligent hybrid-fabric wristband system enabled by thermal encapsulation for ergonomic human-machine interac-tion[J]. Nature Communications, 2025, 16(1): 591.
doi: 10.1038/s41467-024-55649-1
[30] SONG M, LIU Q, XU X, et al. A fabric-based multimodal flexible tactile sensor with precise sensing and discrimination capabilities for pressure-proximity-magnetic field signals[J]. Advanced Functional Materials, 2025. DOI: 10.1002/adfm.202420445.
[31] 夏敏, 李杰, 卢妍, 等. 情绪监测系统及其在可穿戴领域的应用研究[J]. 纺织高校基础科学学报, 2024, 37(2): 72-81.
XIA Min, LI Jie, LU Yan, et al. Research on emotion monitoring system and its application in wearable field[J]. Basic Sciences Journal of Textile Universities, 2024, 37(2): 72-81.
[32] LEE J P, JANG H, JANG Y, et al. Encoding of multi-modal emotional information via personalized skin-integrated wireless facial interface[J]. Nature Communications, 2024, 15(1): 1-10.
doi: 10.1038/s41467-023-43650-z
[33] HONG X, SUN W, ZHANG S, et al. Washable and multifunctional electronic textiles via in situ lamination for personal health care[J]. Advanced Fiber Materials, 2024, 6(2): 458-72.
doi: 10.1007/s42765-023-00368-3
[34] FANG Y, ZOU Y, XU J, et al. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor[J]. Advanced Materials, 2021, 33(41): 2104178.
doi: 10.1002/adma.v33.41
[35] XIONG Y, LUO L, YANG J, et al. Scalable spinning, winding, and knitting graphene textile TENG for energy harvesting and human motion recognition[J]. Nano Energy, 2023. DOI: 10.1016/j.nanoen.2022.108137.
[36] CHEN G, XIAO X, ZHAO X, et al. Electronic textiles for wearable point-of-care systems[J]. Chemical Reviews, 2022, 122(3): 3259-3291.
doi: 10.1021/acs.chemrev.1c00502
[37] ZHANG S, JIANG T, HAN F, et al. A wearable self-powered microneedle system based on conductive drugs for infected wound healing: a new electrical stimulation delivery strategy[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2023.148347.
[38] SHEN J, CHUI C, TAO X. Luminous fabric devices for wearable low-level light therapy[J]. Biomedical Optics Express, 2013, 4(12): 2925-2937.
doi: 10.1364/BOE.4.002925 pmid: 24409391
[39] QIAN Z, YANG Y, WANG L, et al. An implantable fiber biosupercapacitor with high power density by multi-strand twisting functionalized fibers[J]. Angewandte Chemie(International Edition), 2023, 62(28): 1-10.
[40] CHOI S, JEON Y, KWON J, et al. Wearable photomedicine for neonatal jaundice treatment using blue organic light-emitting diodes (oleds): toward textile-based wearable phototherapeutics[J]. Advanced Science, 2022, 9(35): 1-11.
[41] ZHAO X, WANG L, TANG C, et al. Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applica-tions[J]. Acs Nano, 2020, 14(7): 8793-8805.
doi: 10.1021/acsnano.0c03391
[42] HE T, WANG H, WANG J, et al. Self-sustainable wearable textile nano-energy nano-system (nens) for next-generation healthcare applications[J]. Advanced Science, 2019, 6(24): 1-11.
[43] LIU M, WARD T, YOUNG D, et al. Electronic textiles based wearable electrotherapy for pain relief[J]. Sensors and Actuators A: Physical, 2020. DOI: 10.1016/j.sna.2019.111701.
[44] BANERJEE H, LEBER A, LAPERROUSAZ S, et al. Soft multimaterial magnetic fibers and textiles[J]. Advanced Materials, 2023, 35(33): 1-11.
[45] FENG Xiangru, LI Jiannan, ZHANG Xi, et al. Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare[J]. Journal of Controlled Release, 2019, 302(1): 19-41.
doi: 10.1016/j.jconrel.2019.03.020
[46] MOSTAFALU P, KIAEE G, GIATSIDIS G, et al. A textile dressing for temporal and dosage controlled drug delivery[J]. Advanced Functional Materials, 2017, 27(41): 1-10.
[47] MA X, WU X, CAO S, et al. Stretchable and skin-attachable electronic device for remotely controlled wearable cancer therapy[J]. Advanced Science, 2023, 10(10): 1-10.
[48] LI X, XU F, HE Y, et al. A hierarchical structured ultrafine fiber device for preventing postoperative recurrence and metastasis of breast cancer[J]. Advanced Function Materials, 2020, 30(45): 1-12.
[49] ZHANG Q, HUANG Z, JIANG H, et al. "Bamboo-like" strong and tough sodium alginate/polyacrylate hydrogel fiber with directional controlled release for wound healing promotion[J]. Carbohydrate Polymers, 2025. DOI: 10.1016/j.carbpol.2024.122761.
[50] WANG Z, ZHAO X, YAN K, et al. Smart textiles for chronic disease management: advancements, applications, and future prospects[J]. Materials Science & Engineering R: Reports, 2025. DOI: 10.1016/j.mser.2025.100987.
[51] LI W, ZHANG Y, GUO S, et al. Multifunctional sandwich-structured super-hygroscopic zinc-based mof-overlayed cooling wearables for special personal thermal management[J]. Small, 2024, 20(23): 1-11.
[52] LIANG Q, ZHANG D, WU Y, et al. Self-stretchable fiber liquid sensors made with bacterial cellulose/carbon nanotubes for smart diapers[J]. Acs Applied Materials & Interfaces, 2022, 14(18): 21319-21329.
[53] GONG M, YUE L, KONG J, et al. Knittable and sewable spandex yarn with nacre-mimetic composite coating for wearable health monitoring and thermo- and antibacterial therapies[J]. Acs Applied Materials & Interfaces, 2021, 13(7): 9053-63.
[54] CHEN S, FAN S, QIAO Z, et al. Transforming healthcare: intelligent wearable sensors empowered by smart materials and artificial intelligence[J]. Advanced Materials, 2025. DOI: 10.1002/adma.202500412.
[55] FAN W, HE Q, MENG K, et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring[J]. Science Advances, 2020, 6(11): 1-12.
[56] ZHANG Y, WANG H, LU H, et al. Electronic fibers and textiles: recent progress and perspective[J]. Iscience, 2021, 24(7): 1-10.
[57] NODA T, TAKAMATSU S, YAMAMOTO M, et al. Textile-based conformable and breathable ultrasound imaging probe[J]. Arxiv, 2023. DOI: arXiv:2311.03787.
[58] CHOW L, ZHANG Q, HUANG X, et al. Army ant nest inspired adaptive textile for smart thermal regulation and healthcare monitoring[J]. Advanced Materials, 2024. DOI: 10.1002/adma.202406798.
[1] 赵捷清, 王瑧, 秦孝天, 王成成, 张丽平. 模拟绿叶颜色变化的温致变色织物制备及其性能[J]. 纺织学报, 2025, 46(09): 19-26.
[2] 傅林, 钱建华, 单江音, 林灵, 卫梦蓉, 翁可欣, 吴晓睿. 银纳米线/聚氨酯纳米纤维膜柔性传感器制备及其性能[J]. 纺织学报, 2025, 46(09): 74-83.
[3] 权英, 张爱琴, 张曼, 刘淑强, 张钰晶. 基于三维编织结构的柔性应变传感器制备及其性能[J]. 纺织学报, 2025, 46(08): 136-144.
[4] 张嘉诚, 于影, 左雨欣, 顾志清, 汤腾飞, 陈洪立, 吕勇. 聚丙烯腈/二硫化钼纤维薄膜的挠曲电效应与扭转传感特性[J]. 纺织学报, 2025, 46(06): 80-87.
[5] 刘烨, 王俊胜, 金星. 消防员个人防护装备用智能纺织品研究进展[J]. 纺织学报, 2025, 46(05): 105-115.
[6] 陈枭, 赵继忠, 董凯. 基于接触起电效应的新型机电转化纤维性能提升策略[J]. 纺织学报, 2025, 46(05): 41-48.
[7] 韩力杰, 刘樊, 张其冲. 纤维状水系锌离子电池的研究进展与展望[J]. 纺织学报, 2025, 46(05): 59-69.
[8] 严艺, 朱达辉. 老年智能服装研究现状与发展趋势[J]. 纺织学报, 2025, 46(04): 244-254.
[9] 梁雯宇, 季东晓, 覃小红. 微纳米纤维包芯纱制备及其电致发光性能[J]. 纺织学报, 2025, 46(01): 42-51.
[10] 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24.
[11] 张曼, 权英, 冯宇, 李甫, 张爱琴, 刘淑强. 纺织基可穿戴柔性应变传感器的研究进展[J]. 纺织学报, 2024, 45(12): 225-233.
[12] 张蕊, 应迪, 陈冰冰, 田欣, 郑莹莹, 王建, 邹专勇. 碳纳米管修饰三维纤维网非织造布传感器的制备及其性能[J]. 纺织学报, 2024, 45(11): 46-54.
[13] 杨辰晖, 陈檬迪, 关艳, 肖红. 基于光栅动画图案合成光纤织物的设计及其实现[J]. 纺织学报, 2024, 45(07): 40-46.
[14] 王建, 张蕊, 郑莹莹, 董正梅, 邹专勇. 二维过渡金属碳/氮化合物基柔性纺织压力传感器的研究进展[J]. 纺织学报, 2024, 45(06): 219-226.
[15] 卢妍, 洪岩, 方剑. 智能背景下机器学习在柔性应变传感器中的应用研究进展[J]. 纺织学报, 2024, 45(05): 228-238.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!