纺织学报 ›› 2025, Vol. 46 ›› Issue (10): 265-273.doi: 10.13475/j.fzxb.20250302002
王莎莎1,2,3, 李超婧1,2,3, 李彦1,2,3, 毛吉富1,2,3(
), 王富军1,2,3, 王璐1,2,3
WANG Shasha1,2,3, LI Chaojing1,2,3, LI Yan1,2,3, MAO Jifu1,2,3(
), WANG Fujun1,2,3, WANG Lu1,2,3
摘要:
基于纤维、纱线和纺织品的可穿戴技术为实现具有多功能和可扩展的健康设备提供了理想的解决方案。为深入研究智能可穿戴健康纺织品的发展,探讨了其在人体生理健康监测、智能交互技术与可穿戴计算、疾病治疗和特殊人群及健康追踪与管理方面的应用。通过系统综述最新研究进展,旨在深化对纺织品在健康领域应用的理解。其目标是推动下一代智能可穿戴纺织品的设计和创新治疗方案的开发。总结认为:各种形式的智能纺织品正在成为未来个性化医疗保健的重要组成部分,下一代智能纺织品将彻底改变医疗保健和可持续发展的可穿戴技术。指出未来研究方向为:开发新材料和新结构以提升耐洗性和确保可重复使用性;电子系统的进一步小型化及优化界面工程;集成新型纺织结构;研发高效的加工技术;构建完全集成的个性化医疗保健解决方案,实现闭环健康管理及远程患者护理。
中图分类号:
| [1] |
YANG Y, LIU Y, YIN R. Fiber/yarn and textile-based piezoresistive pressure sensors[J]. Advanced Fiber Materials, 2025, 7(1): 34-71.
doi: 10.1007/s42765-024-00479-5 |
| [2] |
TAT T, CHEN G, ZHAO X, et al. Smart textiles for healthcare and sustainability[J]. Acs Nano, 2022, 16(9): 13301-13313.
doi: 10.1021/acsnano.2c06287 pmid: 35969207 |
| [3] |
LIU S, ZHANG W, HE J, et al. Fabrication techniques and sensing mechanisms of textile-based strain sensors: from spatial 1d and 2d perspectives[J]. Advanced Fiber Materials, 2024, 6(1): 36-67.
doi: 10.1007/s42765-023-00338-9 |
| [4] |
LIBANORI A, CHEN G, ZHAO X, et al. Smart textiles for personalized healthcare[J]. Nature Electronics, 2022, 5(3): 142-56.
doi: 10.1038/s41928-022-00723-z |
| [5] | SHI Y, YANG P, LEI R, et al. Eye tracking and eye expression decoding based on transparent, flexible and ultra-persistent electrostatic interface[J]. Nature Communications, 2023. DOI: 10.1038/s41467-023-39068-2. |
| [6] | HUANG B, WANG Q, LI W, et al. Stretchable and body conformable electronics for emerging wearable therapies[J]. Interdisciplinary Medicine, 2024, 3(1): 1-11. |
| [7] | 董凯, 吕天梅, 盛非凡, 等. 面向个性化健康医疗的智能纺织品研究进展[J]. 纺织学报, 2024, 45(1): 240-249. |
|
DONG Kai, LÜ Tianmei, SHENG Feifan, et al. Advances in smart textiles oriented to personalized healthcare[J]. Journal of Textile Research, 2024, 45(1): 240-249.
doi: 10.1177/004051757504500309 |
|
| [8] | 唐文杨, 陈定伟, 吴展鹏, 等. 医疗大健康用纺织品研究现状与发展趋势[J]. 棉纺织技术, 2023, 51(10): 14-24. |
| TANG Wenyang, CHEN Dingwei, WU Zhanpeng, et al. Research status and development trend of medical and health textiles[J]. Cotton Textile Technology, 2023, 51(10): 14-24. | |
| [9] |
YIN Z, LU H, GAN L, et al. Electronic fibers/textiles for health-monitoring: fabrication and application[J]. Advanced Materials Technologies, 2023, 8(3): 2200654.
doi: 10.1002/admt.v8.3 |
| [10] |
LU W, WU G, GAN L, et al. Functional fibers/textiles for smart sensing devices and applications in personal healthcare systems[J]. Analytical Methods, 2024, 16(31): 5372-90.
doi: 10.1039/D4AY01127A |
| [11] |
GAO J, FAN Y, ZHANG Q, et al. Ultra-robust and extensible fibrous mechanical sensors for wearable smart healthcare[J]. Advanced Materials, 2022, 34(20): 2107511.
doi: 10.1002/adma.v34.20 |
| [12] |
HU X, CHEN Y, WANG X, et al. Wearable and regenerable electrochemical fabric sensing system based on molecularly imprinted polymers for real-time stress management[J]. Advanced Functional Materials, 2024, 34(14): 2312897.
doi: 10.1002/adfm.v34.14 |
| [13] | ZHOU L, LI C, LUO Y, et al. An autonomous fabric electrochemical biosensor for efficient health moni-toring[J]. National Science Review, 2025. DOI: 10.1093/nsr/nwaf155. |
| [14] |
HU S, SONG J, TIAN Q, et al. Mechanically and conductively robust eutectogel fiber produced by continuous wet spinning enables epidermal and implantable electrophysiological monitoring[J]. Advanced Fiber Materials, 2024, 6(6): 1980-1991.
doi: 10.1007/s42765-024-00470-0 |
| [15] |
ZENG Q, TIAN X, NGUYEN D, et al. A digitally embroidered metamaterial biosensor for kinetic environments[J]. Nature Electronics, 2024, 7(11): 1-10.
doi: 10.1038/s41928-024-01123-1 |
| [16] |
LEE S, HO D, JEKAL J, et al. Fabric-based lamina emergent MXene-based electrode for electrophysiological monitoring[J]. Nature Communications, 2024, 15(1): 1-12.
doi: 10.1038/s41467-023-43650-z |
| [17] | PENG Y, DONG J, ZHANG Y, et al. Thermally comfortable epidermal bioelectrodes based on ultrastretchable and passive radiative cooling e-textiles[J]. Nano Energy, 2024, 120(1): 2211-2855. |
| [18] | DONG J, PENG Y, ZHANG Y, et al. Superelastic radiative cooling metafabric for comfortable epidermal electrophysiological monitoring[J]. Nano-Micro Letters, 2023. DOI: 10.1007/s40820-023-01156-9. |
| [19] |
PARK H, KIM J, HONG S, et al. Dynamically stretchable supercapacitor for powering an integrated biosensor in an all-in-one textile system[J]. Acs Nano, 2019, 13(9): 10469-10480.
doi: 10.1021/acsnano.9b04340 pmid: 31461268 |
| [20] | ZHAO P, SONG Y, HU Z, et al. Artificial intelligence enabled biodegradable all-textile sensor for smart monitoring and recognition[J]. Nano Energy, 2024. DOI: 10.1016/j.nanoen.2024.110118. |
| [21] |
KIM Y, PARK J, KWON Y, et al. Fabrication of highly conductive graphene/textile hybrid electrodes via hot pressing and their application as piezoresistive pressure sensors[J]. Journal of Materials Chemistry C, 2022, 10(24): 9364-9376.
doi: 10.1039/D2TC00165A |
| [22] |
LI Y, GAO Y, LAN L, et al. Ultrastretchable and wearable conductive multifilament enabled by buckled polypyrrole structure in parallel[J]. Npj Flexible Electronics, 2022, 6(1): 1-11.
doi: 10.1038/s41528-022-00133-3 |
| [23] | LAI Y, LU H, WU H, et al. Elastic multifunctional liquid-metal fibers for harvesting mechanical and electromagnetic energy and as self-powered sensors[J]. Advanced Energy Materials, 2021, 11(18): 1-10. |
| [24] | YANG Y, CHEN Y, LIU Y, et al. Programmable and scalable embroidery textile resistive pressure sensors for integrated multifunctional smart wearable systems[J]. Advanced Fiber Materials, 2025. DOI: 10.1007/s42765-024-00506-5. |
| [25] |
HAO Y, YAN Q, LIU H, et al. A stretchable, breathable, and self-adhesive electronic skin with multimodal sensing capabilities for human-centered healthcare[J]. Advanced Functional Materials, 2023, 33(44): 2303881.
doi: 10.1002/adfm.v33.44 |
| [26] |
HA J, KO J, AHN J, et al. Nanotransfer printing of functional nanomaterials on electrospun fibers for wearable healthcare applications[J]. Advanced Functional Materials, 2024, 34(33): 2401404.
doi: 10.1002/adfm.v34.33 |
| [27] |
PENG J, CHENG H, LIU J, et al. Superhydrophobic MXene-based fabric with electromagnetic interference shielding and thermal management ability for flexible sensors[J]. Advanced Fiber Materials, 2023, 5(6): 2099-2113.
doi: 10.1007/s42765-023-00328-x |
| [28] | XU G, WANG H, ZHAO G, et al. Self-powered electrotactile textile haptic glove for enhanced human-machine interface[J]. Science Advances, 2025. DOI: 10.1126/sciadv.adt0318. |
| [29] |
CHENG A, LI X, LI D, et al. An intelligent hybrid-fabric wristband system enabled by thermal encapsulation for ergonomic human-machine interac-tion[J]. Nature Communications, 2025, 16(1): 591.
doi: 10.1038/s41467-024-55649-1 |
| [30] | SONG M, LIU Q, XU X, et al. A fabric-based multimodal flexible tactile sensor with precise sensing and discrimination capabilities for pressure-proximity-magnetic field signals[J]. Advanced Functional Materials, 2025. DOI: 10.1002/adfm.202420445. |
| [31] | 夏敏, 李杰, 卢妍, 等. 情绪监测系统及其在可穿戴领域的应用研究[J]. 纺织高校基础科学学报, 2024, 37(2): 72-81. |
| XIA Min, LI Jie, LU Yan, et al. Research on emotion monitoring system and its application in wearable field[J]. Basic Sciences Journal of Textile Universities, 2024, 37(2): 72-81. | |
| [32] |
LEE J P, JANG H, JANG Y, et al. Encoding of multi-modal emotional information via personalized skin-integrated wireless facial interface[J]. Nature Communications, 2024, 15(1): 1-10.
doi: 10.1038/s41467-023-43650-z |
| [33] |
HONG X, SUN W, ZHANG S, et al. Washable and multifunctional electronic textiles via in situ lamination for personal health care[J]. Advanced Fiber Materials, 2024, 6(2): 458-72.
doi: 10.1007/s42765-023-00368-3 |
| [34] |
FANG Y, ZOU Y, XU J, et al. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor[J]. Advanced Materials, 2021, 33(41): 2104178.
doi: 10.1002/adma.v33.41 |
| [35] | XIONG Y, LUO L, YANG J, et al. Scalable spinning, winding, and knitting graphene textile TENG for energy harvesting and human motion recognition[J]. Nano Energy, 2023. DOI: 10.1016/j.nanoen.2022.108137. |
| [36] |
CHEN G, XIAO X, ZHAO X, et al. Electronic textiles for wearable point-of-care systems[J]. Chemical Reviews, 2022, 122(3): 3259-3291.
doi: 10.1021/acs.chemrev.1c00502 |
| [37] | ZHANG S, JIANG T, HAN F, et al. A wearable self-powered microneedle system based on conductive drugs for infected wound healing: a new electrical stimulation delivery strategy[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2023.148347. |
| [38] |
SHEN J, CHUI C, TAO X. Luminous fabric devices for wearable low-level light therapy[J]. Biomedical Optics Express, 2013, 4(12): 2925-2937.
doi: 10.1364/BOE.4.002925 pmid: 24409391 |
| [39] | QIAN Z, YANG Y, WANG L, et al. An implantable fiber biosupercapacitor with high power density by multi-strand twisting functionalized fibers[J]. Angewandte Chemie(International Edition), 2023, 62(28): 1-10. |
| [40] | CHOI S, JEON Y, KWON J, et al. Wearable photomedicine for neonatal jaundice treatment using blue organic light-emitting diodes (oleds): toward textile-based wearable phototherapeutics[J]. Advanced Science, 2022, 9(35): 1-11. |
| [41] |
ZHAO X, WANG L, TANG C, et al. Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applica-tions[J]. Acs Nano, 2020, 14(7): 8793-8805.
doi: 10.1021/acsnano.0c03391 |
| [42] | HE T, WANG H, WANG J, et al. Self-sustainable wearable textile nano-energy nano-system (nens) for next-generation healthcare applications[J]. Advanced Science, 2019, 6(24): 1-11. |
| [43] | LIU M, WARD T, YOUNG D, et al. Electronic textiles based wearable electrotherapy for pain relief[J]. Sensors and Actuators A: Physical, 2020. DOI: 10.1016/j.sna.2019.111701. |
| [44] | BANERJEE H, LEBER A, LAPERROUSAZ S, et al. Soft multimaterial magnetic fibers and textiles[J]. Advanced Materials, 2023, 35(33): 1-11. |
| [45] |
FENG Xiangru, LI Jiannan, ZHANG Xi, et al. Electrospun polymer micro/nanofibers as pharmaceutical repositories for healthcare[J]. Journal of Controlled Release, 2019, 302(1): 19-41.
doi: 10.1016/j.jconrel.2019.03.020 |
| [46] | MOSTAFALU P, KIAEE G, GIATSIDIS G, et al. A textile dressing for temporal and dosage controlled drug delivery[J]. Advanced Functional Materials, 2017, 27(41): 1-10. |
| [47] | MA X, WU X, CAO S, et al. Stretchable and skin-attachable electronic device for remotely controlled wearable cancer therapy[J]. Advanced Science, 2023, 10(10): 1-10. |
| [48] | LI X, XU F, HE Y, et al. A hierarchical structured ultrafine fiber device for preventing postoperative recurrence and metastasis of breast cancer[J]. Advanced Function Materials, 2020, 30(45): 1-12. |
| [49] | ZHANG Q, HUANG Z, JIANG H, et al. "Bamboo-like" strong and tough sodium alginate/polyacrylate hydrogel fiber with directional controlled release for wound healing promotion[J]. Carbohydrate Polymers, 2025. DOI: 10.1016/j.carbpol.2024.122761. |
| [50] | WANG Z, ZHAO X, YAN K, et al. Smart textiles for chronic disease management: advancements, applications, and future prospects[J]. Materials Science & Engineering R: Reports, 2025. DOI: 10.1016/j.mser.2025.100987. |
| [51] | LI W, ZHANG Y, GUO S, et al. Multifunctional sandwich-structured super-hygroscopic zinc-based mof-overlayed cooling wearables for special personal thermal management[J]. Small, 2024, 20(23): 1-11. |
| [52] | LIANG Q, ZHANG D, WU Y, et al. Self-stretchable fiber liquid sensors made with bacterial cellulose/carbon nanotubes for smart diapers[J]. Acs Applied Materials & Interfaces, 2022, 14(18): 21319-21329. |
| [53] | GONG M, YUE L, KONG J, et al. Knittable and sewable spandex yarn with nacre-mimetic composite coating for wearable health monitoring and thermo- and antibacterial therapies[J]. Acs Applied Materials & Interfaces, 2021, 13(7): 9053-63. |
| [54] | CHEN S, FAN S, QIAO Z, et al. Transforming healthcare: intelligent wearable sensors empowered by smart materials and artificial intelligence[J]. Advanced Materials, 2025. DOI: 10.1002/adma.202500412. |
| [55] | FAN W, HE Q, MENG K, et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring[J]. Science Advances, 2020, 6(11): 1-12. |
| [56] | ZHANG Y, WANG H, LU H, et al. Electronic fibers and textiles: recent progress and perspective[J]. Iscience, 2021, 24(7): 1-10. |
| [57] | NODA T, TAKAMATSU S, YAMAMOTO M, et al. Textile-based conformable and breathable ultrasound imaging probe[J]. Arxiv, 2023. DOI: arXiv:2311.03787. |
| [58] | CHOW L, ZHANG Q, HUANG X, et al. Army ant nest inspired adaptive textile for smart thermal regulation and healthcare monitoring[J]. Advanced Materials, 2024. DOI: 10.1002/adma.202406798. |
| [1] | 赵捷清, 王瑧, 秦孝天, 王成成, 张丽平. 模拟绿叶颜色变化的温致变色织物制备及其性能[J]. 纺织学报, 2025, 46(09): 19-26. |
| [2] | 傅林, 钱建华, 单江音, 林灵, 卫梦蓉, 翁可欣, 吴晓睿. 银纳米线/聚氨酯纳米纤维膜柔性传感器制备及其性能[J]. 纺织学报, 2025, 46(09): 74-83. |
| [3] | 权英, 张爱琴, 张曼, 刘淑强, 张钰晶. 基于三维编织结构的柔性应变传感器制备及其性能[J]. 纺织学报, 2025, 46(08): 136-144. |
| [4] | 张嘉诚, 于影, 左雨欣, 顾志清, 汤腾飞, 陈洪立, 吕勇. 聚丙烯腈/二硫化钼纤维薄膜的挠曲电效应与扭转传感特性[J]. 纺织学报, 2025, 46(06): 80-87. |
| [5] | 刘烨, 王俊胜, 金星. 消防员个人防护装备用智能纺织品研究进展[J]. 纺织学报, 2025, 46(05): 105-115. |
| [6] | 陈枭, 赵继忠, 董凯. 基于接触起电效应的新型机电转化纤维性能提升策略[J]. 纺织学报, 2025, 46(05): 41-48. |
| [7] | 韩力杰, 刘樊, 张其冲. 纤维状水系锌离子电池的研究进展与展望[J]. 纺织学报, 2025, 46(05): 59-69. |
| [8] | 严艺, 朱达辉. 老年智能服装研究现状与发展趋势[J]. 纺织学报, 2025, 46(04): 244-254. |
| [9] | 梁雯宇, 季东晓, 覃小红. 微纳米纤维包芯纱制备及其电致发光性能[J]. 纺织学报, 2025, 46(01): 42-51. |
| [10] | 刘霞, 吴改红, 闫子豪, 王彩柳. 智能相变调温聚乳酸纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(12): 18-24. |
| [11] | 张曼, 权英, 冯宇, 李甫, 张爱琴, 刘淑强. 纺织基可穿戴柔性应变传感器的研究进展[J]. 纺织学报, 2024, 45(12): 225-233. |
| [12] | 张蕊, 应迪, 陈冰冰, 田欣, 郑莹莹, 王建, 邹专勇. 碳纳米管修饰三维纤维网非织造布传感器的制备及其性能[J]. 纺织学报, 2024, 45(11): 46-54. |
| [13] | 杨辰晖, 陈檬迪, 关艳, 肖红. 基于光栅动画图案合成光纤织物的设计及其实现[J]. 纺织学报, 2024, 45(07): 40-46. |
| [14] | 王建, 张蕊, 郑莹莹, 董正梅, 邹专勇. 二维过渡金属碳/氮化合物基柔性纺织压力传感器的研究进展[J]. 纺织学报, 2024, 45(06): 219-226. |
| [15] | 卢妍, 洪岩, 方剑. 智能背景下机器学习在柔性应变传感器中的应用研究进展[J]. 纺织学报, 2024, 45(05): 228-238. |
|
||