纺织学报 ›› 2025, Vol. 46 ›› Issue (10): 39-45.doi: 10.13475/j.fzxb.20250202801

• 纤维材料 • 上一篇    下一篇

熔喷快速热交换技术构建轻质高弹保暖絮片及其性能调控

郭燕娜1, 黄琪帏1, 许锦胜1, 丁呈凤1, 黄文胜2, 李凯2, 丁彬3, 俞建勇3, 王先锋1,3()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.山东俊富净化科技有限公司, 山东 东营 257091
    3.东华大学 纺织科技创新中心, 上海 200051
  • 收稿日期:2025-02-28 修回日期:2025-05-22 出版日期:2025-10-15 发布日期:2025-10-15
  • 通讯作者: 王先锋(1981—),男,教授,博士。主要研究方向为纺织材料与纺织品设计。E-mail:wxf@dhu.edu.cn
  • 作者简介:郭燕娜(1998—),女,硕士生。主要研究方向为熔喷非织造保暖材料。
  • 基金资助:
    国家自然科学基金项目(52473027);“纺织之光”中国纺织工业联合会应用基础研究计划项目(J202403)

Melt-blown rapid thermal exchange technology enabled construction of lightweight highly elastic thermal insulation batts with performance modulation

GUO Yanna1, HUANG Qiwei1, XU Jinsheng1, DING Chengfeng1, HUANG Wensheng2, LI Kai2, DING Bin3, YU Jianyong3, WANG Xianfeng1,3()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Shandong Junfu Purification Technology Co., Ltd., Dongying, Shandong 257091, China
    3. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
  • Received:2025-02-28 Revised:2025-05-22 Published:2025-10-15 Online:2025-10-15

摘要: 针对熔喷复合保暖絮片存在的保暖性能不佳,生产中物料损耗大、絮片结构不稳定等问题,提出了一种熔喷快速热交换策略,以高效制备轻质、蓬松且具有良好弹性的保暖纤维絮片。该策略的核心在于通过优化熔喷工艺中的快速热交换过程,显著提升纤维的成形速率和絮片结构的稳定性。通过该策略制备的纤维结晶度高(47.21%),纤维直径超细(平均直径为2.88 μm),从而赋予纤维絮片良好的力学性能和保暖性能,使其具有高的断裂应力(1 200 Pa)和较大的断裂应变,在500次循环压缩中仅出现5%的塑性形变。结果表明:所得厚度为4 mm的纤维絮片的孔隙率高达99.13%,密度低至13.40 mg/cm3,导热系数为25.50 mW/(m·K),克罗值为2.02 clo,热阻为0.31 m2·K/W,具有优异的保暖性能。

关键词: 熔喷工艺, 热交换, 纤维絮片, 轻质保暖, 弹性

Abstract:

Objective Low-temperature environments pose significant risks to human health, necessitating advanced thermal insulation materials to maintain body temperature. Melt-blown ultra-fine fiber-based materials, characterized by small pore size and high porosity, hold great potential for thermal insulation applications. However, conventional melt-blown materials suffer from complex processing, poor mechanical stability, and insufficient thermal performance. Therefore, developing a simplified method to fabricate melt-blown insulation materials with balanced mechanical properties and excellent thermal insulation is critical.

Method Polypropylene (PP)-based lightweight elastic fiber batts were produced via melt-blown nonwoven technology. A novel approach was employed to control the melt-environment heat exchange rate by adjusting hot-air temperature (140-200 ℃) during processing, enabling the fabrication of batts with tunable loftiness. The influence of temperature on fiber morphology, crystallinity, mechanical resi-lience, and thermal insulation was systematically studied. This strategy allowed analysis between process parameters and structural and functional properties, providing a scalable route for optimizing insulation materials.

Results The material exhibited a three-dimensional lofted structure fabricated in a single step, with an average pore size of 11.2 μm, porosity of 99.13%, and ultra-low bulk density of 13.40 mg/cm3. Reduced hot-air temperature during processing slowed fiber crystallization, yielding fibers with a fine diameter of 2.88 μm and enhanced crystallinity (47.21%). Mechanically, the batt demonstrated high fracture stress (1 200 Pa) and elongation at break, retaining over 85% of its initial compressive stress after 500 compression cycles at 50% strain, highlighting exceptional fatigue resistance. Thermally, a 4-mm-thick sample (70 g/m2) achieved a low thermal conductivity of 25.50 mW/(m·K), a clo value of 2.02, and thermal resistance of 0.31 m2·K/W, confirming its superior insulation performance across extreme conditions.

Conclusion This study shows that lowering hot-air temperature during melt-blown processing creates coarser fibers with higher crystallinity, and thicker and more porous batts, and improves both mechanical strength and thermal insulation. Optimal parameters allow the production of lightweight yet durable insulation with excellent heat resistance, advancing melt-blown technology. These insights guide the design of high-performance thermal insulation for extreme environments.

Key words: melt-blown process, thermal exchange, fiber batt, lightweight and warm, elasticity

中图分类号: 

  • TS176.7

图1

不同热风温度下纤维絮片的扫描电镜照片"

图2

不同热风温度下纤维絮片的厚度扫描电镜照片"

图3

熔喷保暖纤维絮片成形机制"

表1

不同热风温度下纤维的平均直径与结晶度"

试样编号 平均直径/μm 结晶度/%
MB-200 1.18 22.88
MB-170 1.68 30.86
MB-140 2.88 47.21

图4

不同热风温度下纤维絮片的孔径分布"

表2

不同热风温度下纤维絮片的孔隙率与密度"

试样编号 孔隙率/% 密度/(mg·cm-3)
MB-200 94.83 19.12
MB-170 95.59 14.39
MB-140 99.13 13.40

图5

纤维絮片的超轻展示照片"

图6

纤维絮片的拉伸力学性能"

图7

纤维絮片的压缩力学性能"

表3

不同热风温度下纤维絮片的保暖性能"

试样编号 热阻/
(m2·K·W-1)
克罗值/
clo
导热系数/
(mW·(m·K)-1)
MB-200 0.18 1.15 35.82
MB-170 0.24 1.56 30.93
MB-140 0.31 2.02 25.50

图8

不同热风温度下纤维絮片的红外热成像图"

[1] FAN J, XIAO Y, FENG Y, et al. A systematic review and meta-analysis of cold exposure and cardiovascular disease outcomes[J]. Frontiers in Cardiovascular Medicine, 2023, 10: 1084611.
doi: 10.3389/fcvm.2023.1084611
[2] QI Z, YU G, TING Y, et al. Global, regional, and national burden of mortality associated with non-optimal ambient temperatures from 2000 to 2019: a three-stage modelling study[J]. The Lancet Planetary Health, 2021, 5(7): 415-425.
[3] WU M, SHAO Z, ZHAO N, et al. Biomimetic, knittable aerogel fiber for thermal insulation textile[J]. Science, 2023, 382(6677): 1379-1383.
doi: 10.1126/science.adj8013 pmid: 38127754
[4] 许超. 服装用保暖材料的研究现状及发展前景[J]. 纺织报告, 2020, 39(6): 35-37.
XU Chao, Research status and development prospect of warm materials for clothing[J]. Textile Reports, 2020, 39(6): 35-37.
[5] 吴波, 汪泽幸, 李帅, 等. 保暖材料研究现状与发展前景[J]. 湖南工程学院学报(自然科学版), 2021, 31(1): 74-79.
WU Bo, WANG Zexing, LI Shuai, et al. Research status and development prospects of thermal insulation materials[J]. Journal of Hunan Institute of Engineering, 2021, 31(1): 74-79.
[6] WANG S, LIU C, WANG F, et al. Recent advances in ultrafine fibrous materials for effective warmth reten-tion[J]. Advanced Fiber Materials, 2023, 5(3): 847-867.
doi: 10.1007/s42765-022-00209-9
[7] HU F, WU S, SUN Y. Hollow-structured materials for thermal insulation[J]. Advanced Materials, 2019, 31(38): 1801001.
doi: 10.1002/adma.v31.38
[8] 吴红炎. 轻质高弹超细纤维海绵的制备及其保暖应用研究[D]. 上海: 东华大学, 2021: 19-23.
WU Hongyan. Fabrication of ultralight and superelastic ultrafine fiber sponges and their application in warmth retention[D]. Shanghai: Donghua University, 2021: 19-23.
[9] VALIPOUR P, BABAAHMADI V, NASOURI K. Fabrication of poly(methyl methacrylate) nanofibers and polyethylene nonwoven with sandwich structures for thermal insulator application[J]. Advances in Polymer Technology, 2014, 33(S1): 21440.
[10] WU H, ZHAO L, ZHANG S, et al. Ultralight and mechanically robust fibrous sponges tailored by semi-interpenetrating polymer networks for warmth reten-tion[J]. ACS Applied Materials & Interfaces, 2021, 13(15): 18165-18174.
[11] 程可为, 刘亚, 于雯, 等. 新型熔喷非织造材料研究进展[J]. 纺织导报, 2021(12): 61-66.
CHENG Kewei, LIU Ya, YU Wen, et al. Research progress of new melt blown nonwovens[J]. China Textile Leader, 2021(12): 61-66.
[12] 刘琛, 杨凯璐, 陈明星, 等. 熔喷非织造材料制备及其应用研究进展[J]. 现代纺织技术, 2024, 32(5): 116-129.
LIU Chen, YANG Kailu, CHEN Mingxing, et al, Research progress in the preparation and application of melt-blown nonwovens[J]. Advanced Textile Technology, 2024, 32(5): 116-129.
[13] XU S, ZHANG D, HUANG Q, et al. Trap-induced hydro-charging polylactic acid nonwovens with high charge storage capability for stable and efficient air filtration[J]. Separation and Purification Technology, 2024, 343: 127164.
doi: 10.1016/j.seppur.2024.127164
[14] GAO H, LIU G, GUAN J, et al. Biodegradable hydro-charging polylactic acid melt-blown nonwovens with efficient PM0.3 removal[J]. Chemical Engineering Journal, 2023, 458: 141412.
doi: 10.1016/j.cej.2023.141412
[15] 赵爱景, 程博闻, 张伟力, 等. PP/PET混合型熔喷保暖材料的研制[J]. 化纤与纺织技术, 2011, 40(1): 6-8,23.
ZHAO Aijing, CHENG Bowen, ZHANG Weili, et al. Development of PP/PET bi-component melt-blown thermal material[J]. Chemical Fiber & Textile Technology, 2011, 40(1): 6-8,23.
[16] 王智蓉, 马宇新, 王文强, 等. 防寒保暖用非织造材料研究进展[J]. 印染, 2024, 50(10): 98-102.
WANG Zhirong, MA Yuxin, WANG Wenqiang, et al. Research progress of nonwoven materials with warm insulation against cold environments[J]. China Dyeing & Finishing, 2024, 50(10): 98-102.
[17] KARA Y, MOLNAR K. Revealing of process-structure-property relationships of fine polypropylene fiber mats generated via melt blowing[J]. Polymers for Advanced Technologies, 2021, 32(6): 2416-2432.
doi: 10.1002/pat.v32.6
[18] 彭孟娜, 贾慧莹, 周彦粉. 热风温度对PP/TPU熔喷非织造布结构与性能的影响[J]. 丝绸, 2018, 55(8): 35-40.
PENG Mengna, JIA Huiying, ZHOU Yanfen, et al. Study on effect of hot air temperature on structure and property of PP/TPU melt-blown nonwovens[J]. Journal of Silk, 2018, 55(8): 35-40.
[19] HAO X, XIE S, LIU G. Numerical and experimental investigation of thermal insulation property of melt blown materials[J]. Fibers and Polymers, 24(7): 2325-2332.
doi: 10.1007/s12221-023-00223-7
[20] WILLERER T, BRINKMANN T, DRECHSLER K. Development and application of a cooling rate dependent PVT model for injection molding simulation of semi crystalline thermoplastics[J]. Polymers, 2022, 16(22): 3194.
doi: 10.3390/polym16223194
[21] HU Y, LIAO Y, ZHENG Y, et al. Influence of cooling rate on crystallization behavior of semi-crystalline polypropylene: experiments and mathematical mode-ling[J]. Polymers, 2022, 14(17): 3646.
doi: 10.3390/polym14173646
[22] HALLAVANT K, SOCCIO M, GUIDOTTI G, et al. Critical cooling rate of fast-crystallizing polyesters: the example of poly(alkylene trans-1,4-cyclohexane-dicarboxylate)[J]. Polymers, 2024, 16(19): 2792.
doi: 10.3390/polym16192792
[23] LIU J, YANG Y, DING J, et al. Microfibers: a preliminary discussion on their definition and sour-ces[J]. Environmental Science and Pollution Research, 2019, 26(28): 29497-29501.
doi: 10.1007/s11356-019-06265-w
[24] CUI Y, GONG H, WANG Y, et al. A thermally insulating textile inspired by polar bear hair[J]. Advanced Materials, 2018, 30(14): 1706807.
doi: 10.1002/adma.v30.14
[1] 陶晨, 洪兴华, 印梅芬. 仿真服装压力的虚拟皮肤建模[J]. 纺织学报, 2025, 46(10): 197-205.
[2] 李雨洁, 王承勤, 王伟, 袁如超, 俞建勇, 李发学. 聚酰胺6基弹性体及其并列弹性纤维的制备及其性能[J]. 纺织学报, 2025, 46(09): 46-56.
[3] 王清清, 廖师琴, 魏取福. 光电双响应纱线应变传感器的制备及其性能[J]. 纺织学报, 2025, 46(08): 71-79.
[4] 丁凯, 符芬, 张智翔, 杨语童, 李超婧, 赵帆, 王璐, 王富军. 按压排尿用针织人工膀胱的设计及其力学性能[J]. 纺织学报, 2025, 46(05): 169-178.
[5] 李亿鸿, 蔡君怡, 诸葛晓洁, 吴东芮, 滕德英, 俞建勇, 丁彬, 李召岭. 羧基化纳米纤维素增强的柔性透明导电弹性体[J]. 纺织学报, 2025, 46(04): 11-19.
[6] 张文丽, 刘鑫, 张俏俏, 支超, 李建伟, 樊威. 基于废旧亚麻织物的超弹性气凝胶制备及其性能[J]. 纺织学报, 2025, 46(04): 47-55.
[7] 罗梦颖, 陈慧君, 夏明, 王栋, 李沐芳. 弹性导电复合纤维的制备及其应变与温度传感性能[J]. 纺织学报, 2024, 45(10): 9-15.
[8] 吴建忠, 徐洋, 盛晓伟. 热转印系统色带传动过程张力分析与建模[J]. 纺织学报, 2024, 45(09): 228-234.
[9] 张梦茹, 王灿, 肖汪洋, 廖梦蝶, 王秀华. 聚醚酯弹性纤维的制备及其结构与性能[J]. 纺织学报, 2024, 45(08): 81-88.
[10] 昌康琪, 罗梦颖, 赵青华, 王栋, 李沐芳. 辐射降温聚烯烃纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(07): 24-30.
[11] 马凯, 邓璐璐, 王学琳, 石国民, 邹光龙. 棉浆纤维素/质子型离子液体溶液的流变行为[J]. 纺织学报, 2024, 45(05): 10-18.
[12] 时吉磊, 唐春霞, 付少海, 张丽平. 柔韧隔热纤维素基气凝胶制备与性能[J]. 纺织学报, 2024, 45(04): 8-14.
[13] 方春月, 刘紫璇, 贾立霞, 阎若思. 双等离子体改性超高分子量聚乙烯复合材料的弹道响应[J]. 纺织学报, 2024, 45(02): 77-84.
[14] 盛欣洋, 陈晓娜, 卢娅娅, 李艳梅, 孙光武. 面料拉伸性能与运动文胸防震功能的定量关系[J]. 纺织学报, 2024, 45(01): 161-167.
[15] 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!