纺织学报 ›› 2025, Vol. 46 ›› Issue (08): 71-79.doi: 10.13475/j.fzxb.20241106201

• 纺织工程 • 上一篇    下一篇

光电双响应纱线应变传感器的制备及其性能

王清清(), 廖师琴, 魏取福   

  1. 江西服装学院 江西省现代服装工程技术研究中心, 江西 南昌 330201
  • 收稿日期:2024-11-26 修回日期:2025-05-05 出版日期:2025-08-15 发布日期:2025-08-15
  • 作者简介:王清清(1987—),女,副教授,博士。主要研究方向为功能纳米纤维材料。E-mail:qqwang@jiangnan.edu.cn
  • 基金资助:
    江西省教育厅科学技术研究项目(GJJ212406);江西省教育厅科学技术研究项目(GJJ202405);江西省自然科学基金项目(20212BAB214016)

Preparation and properties of optical and electric double response yarn strain sensor

WANG Qingqing(), LIAO Shiqin, WEI Qufu   

  1. Jiangxi Center for Modern Apparel Engineering and Technology, Jiangxi Institute of Fashion Technology, Nanchang, Jiangxi 330201, China
  • Received:2024-11-26 Revised:2025-05-05 Published:2025-08-15 Online:2025-08-15

摘要: 为改善纱线应变传感器的传感性能,构建了光电双模式响应机制,从而提高可视化传感效果。采用湿法纺丝工艺制备柔性传感器基底,随后制备非均相捻线结构和负载聚多巴胺(PDA)/聚吡咯(PPy)导电层,最后刷涂硫化锌铜(ZnS:Cu)/聚二甲基硅氧烷(PDMS)力致发光层。借助扫描电子显微镜、X射线能谱分析仪、小型拉力机、数字源表和光纤光谱仪等对纱线应变传感器进行表征与分析。结果表明:经结构设计的纱线应变传感器具有高灵敏度和宽应变传感范围。传感器外层刷涂力致发光层后,不仅增强了传感器的传感信号可视化效果,也提高了耐用性。在可穿戴传感应用中,拉伸该纱线应变传感器,可同时产生光信号和电阻信号,能够准确识别人体的生理活动和关节运动。

关键词: 纱线, 应变传感器, 可穿戴, 双响应, 可视化, 聚氨酯弹性体, 湿法纺丝工艺

Abstract:

Objective Conventional flexible wearable sensing devices had typically operated on a single sensing mode, providing only one type of signal output. Their sensitivity to changes in multiple environmental factors had been insufficient, and their application scope had remained limited, failing to meet the diverse and evolving demands of the market. To overcome these limitations, this study had aimed to develop a yarn strain sensor with a dual-mode response mechanism of optics and electricity that would improve its sensing performance in the field of flexible wearable monitoring.

Method The photoelectric double response yarn strain sensor (L-E yarn strain sensor) had been fabricated through wet-spinning processing, heterogeneous structure construction, twisting into yarn, and functional material loading techniques.Scanning electron microscopy (SEM) was utilized to characterize the micromorphology of the L-E yarn strain sensor. The nano measurer tool was employed to measure the particle size of ZnS:Cu. X-ray energy spectrometry (EDS) was used to analyze the positional relationships between different components and the distribution of elements. A tensile testing machine and a digital source meter were used to test and record the changes in electrical signals of the sensor under different stretching conditions, to assess the sensor's electromechanical performance. An optical fiber spectrometer was used to measure the ML behavior of the L-E yarn strain sensor under various ZnS:Cu contents, different stretching strains, and different joint movements in a darkroom.

Results SEM characterization exhibited the non-uniform phase polydimethylsiloxane (PDMS) liquid droplets loaded on the L-E yarn strain sensor, the sensor's twisted structure, the successful loading of polydopamine/polypyrrole (PDA/PPy), and the tight wrapping of the PDMS/ZnS:Cu layer. By measuring the exposed ZnS:Cu particles on the cross-section of the sensor, the average particle size of ZnS:Cu was determined to be 16.9 μm. EDS measurements of characteristic elements such as Zn and S on the sensor further confirmed the presence of PDMS/ZnS:Cu. Analysis of the sensor's electromechanical properties indicated that the PDMS/ZnS:Cu soft matrix provided excellent protection for the sensor, preventing oxidation and enhancing sensor stability. Due to the presence of the PDMS non-uniform phase structure and the twisted yarn structure, the sensitivity value of the L-E yarn strain sensor gradually increased to 5.45, 19.18 and 48.93 when the tensile strain was in the ranges of 0%-62%, 62%-146%, and 146%-160% respectively. The response time was 100 ms, and the lowest detectable strain limit was 0.1%, exhibiting high sensitivity and a wide strain range. The L-E yarn strain sensor showed a broad applicability, maintaining stable curve changes under different strain magnitudes or different activity frequencies, meeting the needs of various application scenarios. Furthermore, in terms of durability and stability, the L-E yarn strain sensor passed a 2 000-cycle tensile test. ML testing of the sensor showed varying ML effects under different ZnS:Cu contents and different tensile strains, and considering both mechanical applicability and cost-effectiveness, a ZnS:Cu content of 30% was determined. To further demonstrate the wearable effect of the sensor, it was fixed on the test subject's fingers and wrists, and as the degree of joint bending increased, the corresponding ML optical fiber spectral curve peaks gradually increased. In terms of electrical signal sensing, the L-E yarn strain sensor was able to accurately recognize strain signals from fingers, wrists, elbows, knees, pulses, and facial expressions.

Conclusion The L-E yarn strain sensor has shown high sensitivity, broad strain range (0%-160%), and excellent cyclic stability. When the sensor was stretched, it could simultaneously generate both resistive and fluorescent signals, which intensifies as the strain increased. The sensor was applied to the field of wearable health monitoring, and through its optical-electric dual-mode response mechanism, not only was the visual sensing effect enhanced, but it could also accurately identify human physiological activities and joint movements, providing a reliable basis for doctors' health diagnoses.

Key words: yarn, strain sensor, wearable, double response, visualization, polyurethane elastomer, wet-spinning process

中图分类号: 

  • TQ342.83

图1

FY纱线实物图"

图2

微观形貌表征"

图3

L-E纱线应变传感器的EDS元素分布图"

图4

不同传感器电阻值随时间的变化"

图5

L-E纱线应变传感器的灵敏度及响应恢复时间"

图6

L-E纱线应变传感器的传感器性能"

图7

L-E纱线应变传感器的力致发光强度探究"

图8

关节荧光测试结果"

图9

L-E纱线应变传感器的人体可穿戴应用"

[1] CHU H Q, XUE J, LUO D, et al. Advances in wearable multifunctional devices based on human-body energy harvesting[J]. Advanced Materials Technologies, 2024, 9(21):2302068.
[2] LIAO Y, TIAN S, LI Y, et al. Ambient nano rf-energy driven self-powered wearable multimodal real-time health monitoring[J]. Nano Energy, 2024, 128:109915.
[3] LIN G, WENG L, ZHANG H, et al. Dual-mode flexible sensor based on magnetic film for wearable smart finger sleeve[J]. Smart Materials and Structures, 2024, 33(9):095035.
[4] ZHANG K, CHANG S, SHANG Y, et al. Mechanoluminescent/Electric dual-mode sensors enabled by trace carbon nanotubes[J]. Small, 2024, 20(50):e2406398.
[5] 汪小钰, 胡平, 操齐高, 等. 不同模式多功能柔性传感器研究进展[J]. 化工进展, 2022, 41(10):5474-5493.
doi: 10.16085/j.issn.1000-6613.2022-0016
WANG Xiaoyu, HU Ping, CAO Qigao, et al. Research progress of multi-functional flexible sensors with different modes[J]. Chemical Industry Progress, 2022, 41(10):5474-5493.
[6] PAN J, YANG M, LUO L, et al. Stretchable and highly sensitive braided composite yarn@polydopamine@polypyrrole for wearable applications[J]. ACS Applied Materials & Interfaces, 2019, 11(7):7338-7348.
[7] 常凯, 李倩倩, 李振. 力致发光现象及其应用研究进展[J]. 有机化学, 2020, 40(11):3656-3671.
doi: 10.6023/cjoc202006052
CHANG Kai, LI Qianqian, LI Zhen. Research progress of photoluminescence phenomena and their applications[J]. Organic Chemistry, 2020, 40(11):3656-3671.
[8] ZHUANG Y, XIE R J. Mechanoluminescence rebrightening the prospects of stress sensing: a review[J]. Advanced Materials, 2021, 33(50):2005925.
[9] LIU Z, QI D, HU G, et al. Surface strain redistribution on structured microfibers to enhance sensitivity of fiber-shaped stretchable strain sensors[J]. Advanced Materials, 2018, 30(5):1704229.
[10] 万爱兰, 沈新燕, 王晓晓, 等. 聚多巴胺修饰还原氧化石墨烯/聚吡咯导电织物的制备及其传感响应特性[J]. 纺织学报, 2023, 44(1):156-163.
WAN Ailan, SHEN Xinyan, WANG Xiaoxiao, et al. Preparation and sensing response characteristics of graphene oxide/polypyrrole conductive fabric modified with polydopamine[J]. Journal of Textile Research, 2023, 44(1):156-163.
[11] 宋金亚. 聚吡咯/碳纳米管复合材料的制备及应用进展[J]. 化学与粘合, 2024, 46(2):184-187, 192.
SONG Jinya. Preparation and application of polypyrrole/carbon nanotube composites[J]. Chemistry and Adhesion, 2024, 46(2):184-187, 192.
[12] ZHANG J, BAO L, LOU H, et al. Flexible and stretchable mechanoluminescent fiber and fabric[J]. Journal of Materials Chemistry C, 2017, 5(32):8027-8032.
[13] FAN W, LIU T, WU F, et al. An antisweat interference and highly sensitive temperature sensor based on poly (3, 4-ethylenedioxythiophene)-poly(styrenesulfonate) fiber coated with polyurethane/graphene for real-time monitoring of body temperature[J]. ACS Mano, 2023, 17(21):21073-21082.
[14] WANG S, BAI Y, YANG X, et al. Highly stretchable potentiometric ion sensor based on surface strain redistributed fiber for sweat monitoring[J]. Talanta, 2020, 214:120869.
[15] ZHANG X, CHEN J, ZHENG Z, et al. Flexible temperature sensor with high reproducibility and wireless closed-loop system for decoupled multimodal health monitoring and personalized thermoregulation[J]. Advanced Materials, 2024, 36(45):e2407859.
[16] ZHOU B, LIU J, HUANG X, et al. Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control[J]. Nano-Micro Letters, 2023, 15(1):72.
doi: 10.1007/s40820-023-01054-0 pmid: 36964430
[17] 王玥, 杨伟峰, 陈浩廷, 等. 高性能ZnS:Cu基力致发光弹性体及其在视觉交互织物中的应用[J]. 发光学报, 2022, 43(10):1609-1619.
WANG Yue, YANG Weifeng, CHEN Haoting, et al. High performance ZnS:Cu-based luminescent elastomer and its application in visual interactive fabrics[J]. Chinese Journal of Luminescence, 2022, 43(10):1609-1619.
[18] ISHIDA S, NARAHARA A. Stress-rate effect on time response of mechanoluminescent-sensor luminescent intensity[J]. Optics Express, 2019, 27(4):3935-3943.
doi: 10.1364/OE.27.003935 pmid: 30876017
[1] 权英, 张爱琴, 张曼, 刘淑强, 张钰晶. 基于三维编织结构的柔性应变传感器制备及其性能[J]. 纺织学报, 2025, 46(08): 136-144.
[2] 杨天琪, 任家智, 王旭真, 陈宇恒. 混合精梳纤维卷投料比数学模型构建与应用[J]. 纺织学报, 2025, 46(07): 62-68.
[3] 林玉婷, 许仕林, 胡毅. 多色彩热塑性聚氨酯/聚丙烯腈纳米纤维纱线的制备及其性能[J]. 纺织学报, 2025, 46(07): 78-86.
[4] 贾陈诺瓦, 张勇, 朱威岩, 刘赛, 唐宁. 芯纱种类对聚丙烯腈纳米纤维导电包芯纱性能的影响[J]. 纺织学报, 2025, 46(07): 87-95.
[5] 贾潞, 周苏秦, 郭龙灿, 刘淑强, 张瑜. 负载MXene的棉/氨纶导电包芯纱制备及其传感性能[J]. 纺织学报, 2025, 46(07): 96-102.
[6] 吴雪杨, 徐启程, 单英浩, 林孝武, 刘晨铭. 集太阳能与电磁能量收集的人体可穿戴纳电网系统设计[J]. 纺织学报, 2025, 46(07): 202-208.
[7] 林思伶, 刘赋瑶, 张成, 侯琳, 徐炎炎, 付冉迁, 樊威. 双向调温阻燃防静电纺织品的制备及其性能[J]. 纺织学报, 2025, 46(06): 38-44.
[8] 张嘉诚, 于影, 左雨欣, 顾志清, 汤腾飞, 陈洪立, 吕勇. 聚丙烯腈/二硫化钼纤维薄膜的挠曲电效应与扭转传感特性[J]. 纺织学报, 2025, 46(06): 80-87.
[9] 李朵, 谢晓雯, 张迪凡, 吴景霞, 陆凯, 陈培宁. Wi-Fi双频织物天线的构建及其电磁性能[J]. 纺织学报, 2025, 46(05): 10-16.
[10] 吴梦婕, 夏勇, 张雨凡, 周欣然, 俞建勇, 熊佳庆. 智能变形纤维/织物材料研究进展[J]. 纺织学报, 2025, 46(05): 49-58.
[11] 韩力杰, 刘樊, 张其冲. 纤维状水系锌离子电池的研究进展与展望[J]. 纺织学报, 2025, 46(05): 59-69.
[12] 梁琦敏, 鄢卓君, 李长昕, 刘志锋, 何思斯. 纤维及织物基电化学传感器与水系电池的研究进展与展望[J]. 纺织学报, 2025, 46(05): 89-95.
[13] 严艺, 朱达辉. 老年智能服装研究现状与发展趋势[J]. 纺织学报, 2025, 46(04): 244-254.
[14] 邵秋, 杨瑞华. 再循环棉/原棉转杯纺纱线的耐磨性[J]. 纺织学报, 2025, 46(03): 64-71.
[15] 李玲, 史倩倩, 田顺, 汪军. 输纤通道对称性对双喂入双分梳转杯纺气流场以及纱线特性的影响[J]. 纺织学报, 2025, 46(02): 69-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!