Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (04): 1-6.doi: 10.13475/j.fzxb.20180505906

• Fiber Materials •     Next Articles

Preparation and antibacterial properties of TiO2-Ag/poly(lactic acid) nano-composite fibers

SUN Hui(), ZHANG Hengyuan, XIAN Yulong, ZHOU Chuankai, YU Bin   

  1. Silk Institute, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2018-05-24 Revised:2018-12-29 Online:2019-04-15 Published:2019-04-16

Abstract:

In order to endow the efficient antibacterial properties for poly(lactic acid) (PLA) fiber, the various mass ratios of TiO2-Ag/PLA nano-composite fibers were prepared by melt spinning. Moreover, TiO2/PLA nano-composite fiber with the certain mass ratio was also prepared under the same conditions. The structure, thermal properties and antibacterial properties of the two kinds of the nano-composite fibers were investigated and contrasted. The results show that two kinds of nano-particles can uniformly dispersed in PLA matrix when the contents of the nanoparticles are no more than 3%. The addition of two nano-particles have almost no influence on the glass transition temperature and crystalline structure of PLA, whereas their cooperation in PLA matrix decreases the melting temperature and thermal stability of PLA. Furthermore, when TiO2 nano-particles with the mass content of 3% are added, the crystalline temperature of PLA slightly reduces. The antibacterial ratio against Staphylococcus aureus and Escherichia coil of TiO2-Ag/PLA nano-composite fibers enhances with the increasing in the content of TiO2-Ag. When two kinds of nano-particles with the same mass ratio are added, TiO2-Ag/PLA nano-composite fiber has the higher antibacterial ratio against the two bacteria compared with TiO2/PLA nano-composite fiber.

Key words: poly(lactic acid), TiO2-Ag nano-mesoporous microsphere particle, nano-composite fiber, antibacterial property

CLC Number: 

  • TB332

Tab.1

Various mass ratios of samples%"

样品编号 PLA TiO2-Ag TiO2
0# 100
1# 99 1
2# 97 3
3# 95 5
4# 97 3

Fig.1

FT-IR spectra of pure PLA and nano-composite fibers"

Fig.2

SEM fracture images of pure PLA and nano-composite fibers"

Fig.3

DSC curves of pure PLA and nano-composite fibers"

Tab.2

Thermal parameters of pure PLA and nano-composite fibers℃"

样品编号 Tg Tc Tm1 Tm2 Xc T5% T95%
0# 62.4 117.4 154.4 166.4 32.6 337.7 386.3
1# 62.3 117.3 153.3 165.3 32.9 337.0 384.3
2# 62.8 117.2 154.3 164.8 33.7 315.1 371.1
3# 63.3 117.1 154.8 164.1 33.1 302.8 373.2
4# 62.2 114.5 152.1 163.1 32.4 300.4 365.4

Fig.4

TG curves of pure PLA and nano-composite fibers"

Fig.5

XRD spectra of pure PLA and nano-composite fibers"

Tab.3

Antibacterial ratio to Staphylococcus aureus and Escherichia coil of pure PLA and nano-composites fibers%"

样品编号 金黄色葡萄球菌 大肠杆菌
0# 0.0 0.0
1# 70.0 77.7
2# 97.4 98.8
3# 99.5 99.8
4# 79.0 75.3
[1] 严之红, 陈小峥, 符雪彩, 等. 34例中心静脉导管相关感染病例调查[J]. 中国感染控制杂志, 2016,15(5):352-354.
YAN Zhihong, CHEN Xiaozheng, FU Xuecai, et al. Report of 34 cases of central venous catheter related infection[J]. Chinese Journal of Infection Control, 2016,15(5):352-354.
[2] XU W H, SHEN R Z, YAN Y R, et al. Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion eletrospin-ning[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017,65(1):428-438.
[3] 贾琳, 王西贤, 张海霞, 等. 聚乳酸/胶原蛋白取向纳米纤维支架的性能[J]. 纺织学报, 2016,37(11):8-13.
JIA Lin, WANG Xixian, ZHANG Haixia, et al. Performance of aligned polylactic acid/collagen nanofibrous scaffolds[J]. Journal of Textile Research, 2016,37(11):8-13.
[4] 王利君, 熊杰, 骆菁菁, 等. 聚乳酸-聚己内酯/丝素蛋白三元复合纳米纤维膜支架的结构与性能研究[J]. 纺织学报, 2017,38(5):8-13.
WANG Lijun, XIONG Jie, LUO Jingjing, et al. Structure and properties of polylactic acid-polycaprolactone/silk fibroin composite nanofibrous scaffolds[J]. Journal of Textile Research, 2017,38(5):8-13.
[5] TONIATTO T V, RODRIGUES B V M, MARSI T C O, et al. Nanostructured poly (lactic acid) electrospun fiber with high loadings of TiO2 nanoparticles: insights into bactericidal activity and cell viability[J]. Materials Science and Engineering: C, 2017,71(2):381-385.
[6] PIERCHALA M K, MAKAREMI M, TAN H L, et al. Nanotubes in nanofibers: antibacterial multilayered polylactic acid/halloysite/gentamicin membranes for bone regeneration application[J]. Applied Clay Science, 2018,160(9):95-105.
[7] PLAN N, DUBEY P, GOPINATH P, et al. Combined effect of cellulose nanocrystal and reduced graphene oxide into poly-lactic acid matrix nanocomposite as a scaffold and its anti-bacterial activity[J]. International Journal of Biological Macromolecules, 2017,95:94-105.
doi: 10.1016/j.ijbiomac.2016.11.041 pmid: 27856322
[8] WANAG A, ROKICKA P, KUSIAK-NEJMAN E, et al. Antibacterial properties of TiO2 modified with reduced graphene oxide[J]. Ecotoxicology and Environmental Safety, 2018,147(1):788-793.
[9] HAIDER A J, AL-ANBARI R H, KADHIM G R, et al. Exploring potential environmental applications of TiO2 nanoparticles[J]. Energy Procedia, 2017,119(14):332-345.
doi: 10.1016/j.egypro.2017.07.117
[10] WU L Z, YU Y, SONG L, et al. M\TiO2 (M=Au, Ag) transparent aqueous sols and its application on polymeric surface antibacterial post-treatment[J]. Journal of Colloid and Interface Science, 2015,446(10):213-217.
[11] HOSSEINI-ZORI M. Co-doped TiO2 nanostructures as a strong antibacterial agent and self-cleaning cover: synjournal, characterization and investigation of photocatalytic activity under UV irradiation[J]. Journal of Photochemistry and Photobiology B: Biology, 2018,178(1):512-520.
[12] HE Y, ZHOU B, LIANG H S, et al. Silver nanoparticles on flower-like TiO2-coated polyacrylonitrile nanofibers: catalytic and antibacterial applications[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017,529(18):380-386.
[13] MOTLAGH A L, BASTANIS S, HASHMEI M M. Investigation of synergistic effect of nano sized Ag/TiO2 particles on antibacterial, physical and mechanical properties of UV-curable clear coatings by experimental design[J]. Progress in Organic Coatings, 2014,77(2):502-511.
[14] 周传凯, 于斌, 孙辉, 等. 溶胶凝胶法制备TiO2-Ag的介孔微球及其抗菌性能研究[J]. 浙江理工大学学报(自然科学版), 2017,37(4):485-490.
ZHOU Chuankai, YU Bin, SUN Hui, et al. Preparation of TiO2-Ag mesoporous microspheres by gel-sol method and analysis of its antibacterial property[J]. Journal of Zhejiang Sci-Tech University (Natural Science Edition), 2017,37(4):485-490.
[15] NAM J Y, RAY S S, OKAMOTO M. Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite[J]. Macromolecules, 2003,36(19):7126-7131.
[16] CIFUENTES C, LIEBLICH M, LÓPEZA F A, et al. Effect of Mg content on the thermal stability and mechanical behaviour of PLLA/Mg composites processed by hot extrusion[J]. Material Science and Engineering: C, 2017,72:18-25.
[17] IKADA Y, JAMSHIDI K, TSUJI H, et al. Stereocomplex formation between enantiomeric poly(lactides)[J]. Macromolecules, 1987,20(4):904-906.
[18] ZHANG H, PIN C M, DANIEL M B, et al. Bactericidal mode of titanium dioxide photocatalysis[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2000,130(2/3):163-170.
[19] KAYANO S, TOSHIYA W, KAZUHITO H. Studies on photokilling of bacteria on TiO2 thin film[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003,156(1-3):227-233.
[20] JONES S A, BOWLER P G, WALKER M, et al. Controlling wound bioburden with a novel silver-containing hydrofiber dressing[J]. Wound Repair Regen, 2004,12(3):288-294.
doi: 10.1111/j.1067-1927.2004.012304.x pmid: 15225207
[21] ASHKARRAN A A, AGHIGH S M, KAVIANIPOUR M, et al. Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents[J]. Current Applied Physics, 2011,11(4):1048-1055.
[1] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
[2] WANG Tingting, LIU Liang, CAO Xiuming, WANG Qingqing. Preparation and photodynamic antimicrobial properties of hypocrellinpoly(methyl methacrylate-co-methacrylic acid) nanofibers [J]. Journal of Textile Research, 2020, 41(05): 1-7.
[3] WANG Xiaofei, WAN Ailan. Preparation of polypyrrole / silver conductive polyester fabric by ultraviolet exposure [J]. Journal of Textile Research, 2020, 41(04): 112-116.
[4] ZHAO Bing, HUANG Xiaocui, QI Ning, ZHONG Zhou, CHE Mingguo, GE Liangliang. Research progress of antibacterial cotton fabric treated with silver nanoparticles based on covalent bond [J]. Journal of Textile Research, 2020, 41(03): 188-196.
[5] WU Qianqian, LI Ke, YANG Lishuang, FU Yijun, ZHANG Yu, ZHANG Haifeng. Preparation and properties of drug-loaded polyvinylidene fluoride wound dressings [J]. Journal of Textile Research, 2020, 41(01): 26-31.
[6] ZHANG Zhibin, LI Gang, MAO Senxian, LI Xunxun, CHEN Yushuang, MAO Qingshan, LI Yi, PAN Zhijuan, WANG Xiaoqin. Preparation and antibacterial activity of silk fibroin/chitosan microspheres [J]. Journal of Textile Research, 2019, 40(10): 7-12.
[7] WANG Wencong, FAN Jingjing, DING Chao, WANG Hongbo. Preparation and properties of multifunctional composite conductive wool fabric [J]. Journal of Textile Research, 2019, 40(08): 117-123.
[8] WU Jiao, YU Husheng, WAN Xingyun, TIAN Ping, LI Huimin, HOU Xiaoxin. Preparation and properties of anti-bacterial, anti-mite and anti-mildew functional modified viscose fibers [J]. Journal of Textile Research, 2019, 40(07): 19-23.
[9] . Preparation and antibacterial properties of electrospun core shell nanoscale packaging films [J]. Journal of Textile Research, 2018, 39(12): 13-17.
[10] . Chitosan based nanofiber drug loaded system and its sustained release behavior [J]. Journal of Textile Research, 2018, 39(12): 7-12.
[11] . Preparationof porphyrin grafted bacterial cellulose and photodynamic antimicrobial property thereof [J]. Journal of Textile Research, 2018, 39(11): 20-26.
[12] . Adsorption mechanism between nano-gold and viscose fiber [J]. Journal of Textile Research, 2018, 39(09): 22-28.
[13] . Miscibility and crystallization properties of biodegradable poly (3-hydrozybutyrate-co-3-hydroxyvalerate)/poly (lactic acid) blends [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 1-8.
[14] . Antibacterial and hydrophilic finishing of moisture absorption and sweat transport polyester knitted fabric [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 74-79.
[15] . Preparation and antibacterial and dyeing properties of chitosan grafted antibacterial viscose fiber  [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 9-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!