Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (09): 83-90.doi: 10.13475/j.fzxb.20180806008

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Scouring and bleaching of cotton fabric by low temperature near neutrality one-bath one-step process

ZHANG Yue1,2,3,4, HU Danling1,2, REN Jinna1,2, LI Qing1,2()   

  1. 1. School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing & Finishing, Wuhan Textile University, Wuhan, Hubei 430200, China
    3. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    4. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2018-08-23 Revised:2019-05-03 Online:2019-09-15 Published:2019-09-23
  • Contact: LI Qing E-mail:2014020@wtu.edu.cn

Abstract:

In order to achieve a short pretreatment utilizing bio-enzyme for cotton fabric, the low-temperature activated system based on sodium perborate/tetraethylenediamine (SPB/TAED) was established. At the same time, both cellulase and pectinase were added into SPB/TAED system. Influences of the type and dosage of bio-enzyme, dosage of SPB/TAED, process duration and temperature on whiteness index (WI) and capillary effect (CE) of the fabric were investigated by the variable-controlling method. It can be found that good compatibility exists between bio-scouring and SPB/TAED bleaching. An optimized process is obtained as follows: cellulase 1 g/L, pectinase 2 g/L, SPB 15 g/L, TAED 25 g/L, penetrating agent 1 g/L, duration of 60 min and temperature of 60 ℃. In comparison with the conventional process carried out at 95 ℃ using peroxide and strong alkali (pH 12-13), the optimized low-temperature process has an obvious advantage in saving energy. The WI, wettability and dyeability are similar for the fabrics pretreated by the low-temperature and conventional high-temperature process. The breaking force, however, treated by low-temperature process is higher, and the surface of such pretreated fabrics is smoother and cleaner.

Key words: cotton fabric, low-temperature bleaching, bio-scouring, bio-enzyme, one-step, pretreatment

CLC Number: 

  • TS192.5

Fig.1

Influence of enzyme type on whiteness index and capillary efficiency of cotton fabric"

Fig.2

Influence of mixed enzyme mass concentration on whiteness index and capillary efficiency of cotton fabric"

Fig.3

Oxidation bleaching mechanism of SPB/TAED activation system. (a)Reaction formula of generating H2O2 by SPB in water;(b)Activated reaction of TAED/H2O2 produced PAA in-situ; (c) Effect mechanism of PAA on colored impurities in cotton; (d) PAA was nucleophilic attacked by H2O2 to generate AA"

Fig.4

Influence of SPB mass concentration on whiteness index and capillary efficiency of cotton fabric"

Fig.5

Influence of TAED mass concentration on whiteness index and capillary efficiency of cotton fabric"

Fig.6

Influence of scouring and bleaching duration on whiteness index and capillary effect of cotton fabric"

Fig.7

Influence of scouring and bleaching temperature on whiteness index and capillary effect of cotton fabric"

Tab.1

Comparisons of fabric's WI and pH value, temperature and theoretical energy consumption of process"

工艺 白度/% pH值 温度/℃ ΔQ/kJ
练漂前 练漂后
A 81.91±0.17 9.18 5.87 60 6 318
B 82.97±1.60 13.05 12.81 95 13 689

Tab.2

Comparisons of moisture absorption and mechanical properties of fabric"

试样
编号
毛效/cm 铺展时间/s 断裂强力/(N·mm-2)
1 6.20±0.39 6.59±0.41 427.62 312.30
2 12.90±0.48 0.46±0.07 413.94 323.45
3 9.70±0.42 0.71±0.10 263.03 217.73

Tab.3

Comparisons of fabric's dyeability toward to reactive dye"

试样编号 E/% F/% C K/S h/(°) ΔE
1 52.76 7.05 35.82 2.93 209.68 5.92
2 70.17 28.77 38.79 2.72 216.72 0.52
3 66.71 26.31 38.61 2.64 217.35 -

Fig.8

Comparisons of micro morphology of fabric(×5 000). (a) Greige fabric; (b) Low-temperature treated fabric;(c) Conventional treated fabric"

[1] MADHU A, CHAKRABORTY J N. Developments in application of enzymes for textile processing[J]. Journal of Cleaner Production, 2017,145:114-133.
doi: 10.1016/j.jclepro.2017.01.013
[2] NIAZ A, MALIK Q J, MUHAMMAD S, et al. Bioscouring of cellulosic textiles[J]. Coloration Technology, 2011,127(4):211-216.
doi: 10.1111/cote.2011.127.issue-4
[3] 任花, 刘建勇. 生物酶在棉织物前处理中的应用研究[J]. 天津科技, 2016,43(1):17-20.
REN Hua, LIU Jianyong. The application of enzymes in cotton pretreatment[J]. Tianjin Science & Technology, 2016,43(1):17-20.
[4] HOFMANN J, JUST G, PRITZKOW W, et al. Bleaching activators and the mechanism of bleaching activation[J]. Journal Für Praktische Chemie Chemiker-Zeitung, 1992,334(4):293-297.
[5] YASHOVARDHAN I, AKHILAHMAD W. Sodium perborate bleaching of cotton by using tetraacetylethylenediamine activator[J]. Indian Journal of Fiber & Textile Research, 2018,43(1):120-125.
[6] ABDEL-HALIM E S, AL-DEYAB S S. Low temperature bleaching of cotton cellulose using peracetic acid[J]. Carbohydrate Polymers, 2011,86:988-994.
doi: 10.1016/j.carbpol.2011.05.051
[7] SCARBOROUGH S J, MATHEWS A J. Using T. A.E.D in bleaching fiber blends to improve fiber quality[J]. Textile Chemist & Colorist & American Dyestuff Reporter, 2000,32(3):33-37.
[8] SHAO J Z, HUANG Y, WANG Z H, et al. Cold pad-batch bleaching of cotton fabrics with TAED/H2O2 activating system[J]. Coloration Technology, 2010,126(2):103-108.
doi: 10.1111/(ISSN)1478-4408
[9] LI Q, TANG H, TANG R C. Bleaching of modal/an-g-casein fiber blend with H2O2/TAED activating system[J]. Journal of Applied Polymer Science, 2012,125(2):1193-1200.
doi: 10.1002/app.v125.2
[10] ŠPIČKA N, ZUPIN Ž, KOVAČ J, et al. Enzymatic scouring and low-temperature bleaching of fabrics constructed from cotton, regenerated bamboo, poly(lactic acid), and soy protein fibers[J]. Fibers and Polymers, 2015,16(8):1723-1733.
doi: 10.1007/s12221-015-5140-1
[11] YU J, SHAO D, SUN C, et al. Pilot-plant investigation on low-temperature bleaching of cotton fabric with TBCC-activated peroxide system[J]. Cellulose, 2017,24(6):2647-2655.
doi: 10.1007/s10570-017-1276-z
[12] WANG G, UMBUZEIRO G D, VENDEMIATTI J A, et al. Synjournal, characterization, and toxicological properties of new cationic bleach activators[J]. Journal of Surfactants and Detergents, 2017,20(1):277-285.
doi: 10.1007/s11743-016-1899-3
[13] ALTAY P, HAUSER P J, GURSOY N C, et al. Facile synjournal of a novel, highly effective, more sustainable and cost-effective cationic bleach activator for cotton: N-[4-(N,N,N)-triethylammoniumchloride-butyryl] caprolactam[J]. Cellulose, 2019,26(4):2849-2860.
doi: 10.1007/s10570-018-02224-9
[14] WANG S, LI S, ZHU Q, et al. A novel low temperature approach for simultaneous scouring and bleaching of knitted cotton fabric of 60 ℃[J]. Industrial & Engineering Chemistry Research, 2014,53(24):9985-9991.
[15] CAI J Y, EVANS D J. Guanidine derivatives used as peroxide activators for bleaching cellulosic textiles[J]. Coloration Technology, 2007,123(2):115-118.
doi: 10.1111/cte.2007.123.issue-2
[16] ALGHAMDI A A, ABDEL-HALIM E S, AL-OTHMAN Z A. Low-temperature bleaching of cotton cellulose using an ultrasound-assisted tetraacetylethylenediamine/hydrogen peroxide/triethanolamine system[J]. Bioresources, 2016,11(1):2784-2796.
[17] LIU Y, TAO J, SUN J, et al. Removing polysaccharides and saccharides related coloring impurities in alkyl polyglycosides by bleaching with the H2O2/TAED/NaHCO3 system[J]. Carbohydrate Polymers, 2014,112:416-421.
doi: 10.1016/j.carbpol.2014.05.065 pmid: 25129762
[18] XU C, LONG X, DU J, et al. A critical reinvestigation of the TAED-activated peroxide system for low-temperature bleaching of cotton[J]. Carbohydrate Polymers, 2013,92:249-253.
doi: 10.1016/j.carbpol.2012.08.088 pmid: 23218291
[19] MAGDY K Z, HANAN B A. A greener approach for full flax bleaching[J]. Journal of The Textile Institute, 2010,101(7):674-678.
doi: 10.1080/00405000902745547
[20] 向中林, 韩雪梅, 刘增祥, 等. 棉织物低温酶氧一浴前处理工艺[J]. 纺织学报, 2017,38(5):80-85.
XIANG Zhonglin, HAN Xuemei, LIU Zengxiang, et al. Low-temperature pretreatment of cotton fabric by combining enzyme treating and peroxide bleaching in one bath[J]. Journal of Textile Research, 2017,38(5):80-85.
[21] 陈静奕, 王强, 周丽华, 等. 棉织物的复合酶精炼[J]. 印染, 2011,37(3):1-3,7.
CHEN Jingyi, WANG Qiang, ZHOU Lihua, et al. Biopreparation of cotton fabric with composite enzymes[J]. China Dyeing & Finishing, 2011,37(3):1-3,7.
[22] Sodiumaperborate[DB/OL].[2018-7-12]. https://en.wikipedia.org/wiki/Sodium_perborate.
[23] XU C, HINKS D, SHAMEY R. Bleaching cellulosic fibers via pre-sorption of N-[4-(triethylaminomethyl)-benzoyl]-butyrolactam chloride[J]. Cellulose, 2010,17(4):849-857.
doi: 10.1007/s10570-010-9412-z
[24] 阎贺静, 堵国成, 陈坚. 棉织物精炼中温度对酶催化效率的影响[J]. 纺织学报, 2012,33(9):76-81.
YAN Hejing, DU Guocheng, CHEN Jian. Effects of scouring temperature of cotton on efficiency of enzymaticcatalysis[J]. Journal of Textile Research, 2012,33(9):76-81.
[25] LIU K, ZHANG X, YAN K L. Bleaching of cotton fabric with tetraacetylhydrazine as bleach activator for H2O2[J]. Carbohydrate Polymers, 2018,188:221-227.
doi: 10.1016/j.carbpol.2018.01.111 pmid: 29525159
[26] 赵酒泉. 过硼酸钠低温漂白棉织物研究[J]. 针织工业, 2014 (3):49-52.
ZHAO Jiuquan. Study of sodium perborate bleaching on cotton fabrics at low temperature[J]. Knitting Industries, 2014 (3):49-52.
[1] WANG Bo, FAN Lihua, YUAN Yun, YIN Yunjie, WANG Chaoxia. Preparation and electric storage performance of stretchable polypyrrole / cotton knitted fabric [J]. Journal of Textile Research, 2020, 41(10): 101-106.
[2] LIU Guojin, SHI Feng, CHEN Xinxiang, ZHANG Guoqing, ZHOU Lan. Preparation of polyurethane / phase change wax functional finishing agents for heat storage and temperature regulation and their applications on cotton fabrics [J]. Journal of Textile Research, 2020, 41(07): 129-134.
[3] CHENG Shijie, WANG Chenyang, ZHANG Hongwei, ZUO Danying. Effect of boron nitrogen doped carbon dots on ultraviolet-protection of cotton fabrics [J]. Journal of Textile Research, 2020, 41(06): 93-98.
[4] ZHOU Qingqing, CHEN Jiayi, QI Zhenming, CHEN Weijian, SHAO Jianzhong. Preparation and characterization of flame retardant and antibacterial cotton fabric [J]. Journal of Textile Research, 2020, 41(05): 112-120.
[5] TAN Lin, SHI Yidong, ZHOU Wenya. Study on enhancement of hydrophobicity treatment of cotton fabrics using silica sol [J]. Journal of Textile Research, 2020, 41(04): 106-111.
[6] WEI Tengxiang, LI Min, PENG Hongyun, FU Shaohai. Relationship between open-width mercerization condition and loop structure of weft plain-knitted cotton fabrics [J]. Journal of Textile Research, 2020, 41(04): 98-105.
[7] ZHAO Bing, HUANG Xiaocui, QI Ning, ZHONG Zhou, CHE Mingguo, GE Liangliang. Research progress of antibacterial cotton fabric treated with silver nanoparticles based on covalent bond [J]. Journal of Textile Research, 2020, 41(03): 188-196.
[8] LIN Jiameng, WAN Ailan, MIAO Xuhong. Preparation and properties of polypyrrole / silver conductive polyester fabrics [J]. Journal of Textile Research, 2020, 41(03): 113-117.
[9] GAO Simeng, WANG Hongbo, DU Jinmei, WANG Wencong. Synthesis of polybetaine antibacterial agent and its applications in cotton textiles finishing [J]. Journal of Textile Research, 2020, 41(02): 89-94.
[10] YI Ling, ZHANG He, FU Xin, LI Wen. Preparation and far-infrared emission performance of graphene based zirconium / titanium composites modified cotton fabrics [J]. Journal of Textile Research, 2020, 41(01): 102-109.
[11] WANG Xiaoyan, DU Jinmei, PENG Lingqi, JING Lili, XU Changhai. Alkali reduction and one-bath-one-step process for dyeing polyester knitted fabric [J]. Journal of Textile Research, 2020, 41(01): 80-87.
[12] LI Yuzhou, ZHANG Yufan, ZHOU Qingqing, CHEN Guoqiang, XING Tieling. Preparation and electrochemical properties of MnO2 / graphene / cotton fabric composite electrode [J]. Journal of Textile Research, 2020, 41(01): 96-101.
[13] CHEN Ying, ZHOU Shuang, WEI Tianjing, FANG Haoxia, LI Yufei. Preparation and properties of polypyrrole composite fabric by soft template process [J]. Journal of Textile Research, 2019, 40(12): 93-97.
[14] CUI Yifan, HOU Wei, ZHOU Qianxi, YAN Jun, LU Yanhua, HE Tingting. Influence of silk sericin temperature sensitive hydrogel on properties of cotton fabrics [J]. Journal of Textile Research, 2019, 40(12): 74-78.
[15] SUN Yufa, ZHOU Xiangdong. Synthesis and characterization of novel phosphorous and nitrogen-containing flame retardant for cotton fabrics [J]. Journal of Textile Research, 2019, 40(12): 79-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!