Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (01): 102-109.doi: 10.13475/j.fzxb.20180906408

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Preparation and far-infrared emission performance of graphene based zirconium/titanium composites modified cotton fabrics

YI Ling, ZHANG He(), FU Xin, LI Wen   

  1. College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
  • Received:2018-09-26 Revised:2019-10-22 Online:2020-01-15 Published:2020-01-14
  • Contact: ZHANG He E-mail:mzhang_he@126.com

Abstract:

In order to further improve the far-infrared emission characteristics of graphene-based nanocomposites, zirconia/titania/reduced graphene oxide (ZrO2/TiO2-rGO) nanocomposites were prepared by one-step hydrothermal modification of graphene oxide with zirconia/titanium oxide. Cotton fabrics with far-infrared emissivity were prepared by combining ZrO2/TiO2-rGO with the textiles using water-soluble polyurethane as binder. The morphology and internal structure of ZrO2/TiO2-rGO composites were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy, and the far infrared emission properties of modified cotton fabrics were characterized by far infrared emissivity and infrared thermal imaging technology. The results show that at 120 ℃ for 4 reaction hours, the far-infrared emissivity of the treated cotton fabric was about 2.5% higher than that of the untreated cotton fabric when the mass ratio of graphene oxide,titanium dioxide,zirconium oxychloride was 5∶3∶2. This method could effectively reduce the content of graphene and provide good far-infrared emission performance with low cost.

Key words: functional finishing of cotton fabric, hydrothermal, graphene oxide, zirconium/titaniumoxide, composite, water soluble polyurethane, far infrared emission rate

CLC Number: 

  • TQ421.2

Fig.1

Principle of ZrO2/TiO2-rGO composites preparation"

Fig.2

SEM image of graphene oxide (×10 000)"

Fig.3

Infrared spectrogram of graphene oxide"

Fig.4

SEM image of ZrO2/TiO2-rGO composites"

Fig.5

Infrared spectra of ZrO2/TiO2-rGO composites"

Fig.6

Dispersion of composite materials in water under different conditions. (a) At different temperatures (4 h); (b) At different time conditions (120 ℃); (c) Under different proportions of graphene oxide, titanium dioxide and zirconium oxychloride"

Tab.1

Far infrared emission effect of traditional far infrared textiles"

样品 有效成分 有效成分
用量/%
远红外
发射率/%
丙纶远红外纤维 电气石母粒 8 82
聚酯远红外纤维 TiO2-SiO2-Cr2O3 3 85
棉远红外织物 陶瓷粉 6 86
涤纶/丙纶/锦纶远红外织物 Fe2O3、BeO、SrO、SiO2、CaO、MnO2 8 87
后整理远红外织物 六环石 5 85

Tab.2

Far infrared emissivity of ZrO2/TiO2-rGO composites modified cotton fabric"

样品 远红外发射率/%
未水洗 水洗10次 水洗20次
未处理织物 86.8 86.5 86.5
水性聚氨酯整理织物 86.3 86.4 86.4
ZrO2整理织物 87.7 87.1 86.2
TiO2整理织物 87.2 87.0 86.3
复合材料改性织物(4:3:3) 87.6 87.8 87.5
复合材料改性织物(5:3:2) 89.3 89.5 89.2
复合材料改性织物(6:2:2) 89.0 88.9 88.9
复合材料改性织物(7:2:1) 88.5 88.6 88.3
复合材料改性织物(8:1:1) 88.0 88.2 88.0
GO整理织物 88.2 88.1 88.1

Fig.7

Infrared thermography of untreated cotton fabric and modified cotton fabric. (a)Untreated cotton fabric;(b) Polyurethane finishing cotton fabric; (c)Cotton fabric treated with ZrO2; (d) Cotton fabric treated with TiO2;(e)Composites modified cotton fabric (4:3:3); (f) Composites modified cotton fabric (5:3:2);(g) Composites modified cotton fabric (6:2:2); (h) Composites modified cotton fabric (7:2:1);(i) Composites modified cotton fabric (8:1:1); (j) Cotton fabric treated with GO"

[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004,306(5696):666-669.
doi: 10.1126/science.1102896 pmid: 15499015
[2] 叶星柯, 周乾隆, 万中全, 等. 柔性超级电容器电极材料与器件研究进展[J]. 化学通报, 2017,80(1):10-33.
YE Xingke, ZHOU Qianlong, WANG Zhongquan, et al. Research progress of electrode materials and devices for flexible supercapacitors[J]. Chemical Bulletin, 2017,80(1):10-33.
[3] FAN Z, LI S, YUAN F, et al. Fluorescent graphene quantum dots for biosensing and bioimaging[J]. Rsc Advances, 2015,5(25):19773-19789.
doi: 10.1039/C4RA17131D
[4] TSAI M L, TU W C, TANG L, et al. Efficiency enhancement of silicon heterojunction solar cells via photon management using graphene quantum dot as downconverters[J]. Nano Letters, 2015,16(1):309-313.
pmid: 26676025
[5] DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010,39:228-240.
doi: 10.1039/b917103g pmid: 20023850
[6] LIU S, HE X, ZHU J, et al. Cu3P/RGO nanocomposite as a new anode for lithium-ion batteries[J]. Scientific Reports, 2016,6:35189.
doi: 10.1038/srep35189 pmid: 27725701
[7] 俱玉云. 氧化石墨烯, 碳量子点复合纳米材料在环境污染物催化降解, 生物样品检测方面的应用[D]. 兰州:兰州大学, 2015,42-59.
JU Yuyun. Applications of grapheme oxide, carbon quantum dots nanocomposites in catalytic degradation of environmental pollutants, biological sample testing[D]. Lanzhou: Lanzhou University, 2015:42-59.
[8] 曲丽君, 田明伟, 迟淑丽, 等. 部分石墨烯复合纤维与制品的研发[J]. 纺织学报, 2016,37(10):170-177.
QU Lijun, TIAN Mingwei, CHI Shuli, et al. Research and development of some graphene composite fibers and products[J]. Journal of Textile Research, 2016,37(10):170-177.
[9] 余改丽, 张弘楠, 张娇娇, 等. 高效低阻聚丙烯腈/石墨烯纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2017,38(2):26-33.
YU Gaili, ZHANG Hongnan, ZHANG Jiaojiao, et al. Preparation and antibacterial properties of polyacrylonitrile / graphene nanofiber membrane with high efficiency and low resistance[J]. Journal of Textile Research, 2017,38(2):26-33.
[10] HU X, TIAN M, QU L, et al. Multifunctional cotton fabrics with graphene/polyurethane coatings with far-infrared emission, electrical conductivity, and ultraviolet-blocking properties[J]. Carbon, 2015,95:625-633.
doi: 10.1016/j.carbon.2015.08.099
[11] 王宗花, 赵凯, 迟德玲, 等. 石墨烯功能化海藻纤维的制备方法:ZL102181961A[P]. 2011-09-14.
WANG Zonghua, ZHAO Kai, CHI Deling, et al. Preparation of graphene functionalized algal fibe: ZL102181961A[P]. 2011-09-14
[12] 梁翠, 郑敏. 远红外纳米纺织品的性能测试[J]. 纺织学报, 2013,34(9):49-52.
LIANG Cui, ZHENG Min. Study on performance of far-infrared nanometer textiles[J]. Journal of Textile Research, 2013,34(9):49-52.
[13] 吴素坤. 远红外纤维的研究进展[J]. 国外纺织技术, 2003(6):1-4.
WU Sukun. Research progress of far infrared fibers[J]. Textile Technology Overseas, 2003(6):1-4.
[14] HUMMERS JR W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of The American Chemical Society, 1958,80(6):1339-1339.
doi: 10.1021/ja01539a017
[15] 任小孟, 王源升, 何特. Hummers 法合成石墨烯的关键工艺及反应机理[J]. 材料工程, 2013 (1):1-5.
doi: 10.3969/j.issn.1005-5053.2013.1.001
REN Xiaomeng, WANG Yuansheng, HE Te. Key processes and mechanism for preparing graphene by Hummers method[J]. Journal of Materials Engineering, 2013 (1):1-5.
doi: 10.3969/j.issn.1005-5053.2013.1.001
[16] 傅玲, 刘洪波, 邹艳红, 等. Hummers法制备氧化石墨时影响氧化程度的工艺因素研究[J]. 炭素, 2005(4):10-14.
FU Ling, LIU Hongbo, ZOU Yanhong, et al. Technology research on oxidative degree of graphite oxide prepared by hummers method[J]. Carbon, 2005(4):10-14.
[17] 李永霞, 李芸. 石墨烯/二氧化钛复合材料的制备及其对亚甲基蓝的吸附性能研究[J]. 精细与专用化学品, 2017,25(9):53-56.
LI Yongxia, LI Yun. Preparation of graphene/titanium dioxide composites and its adsorption properties for methylene blue[J]. Fine and Specialty Chemicals, 2017,25(9):53-56.
[18] 吴海培, 高晓红, 方婧, 等. 二氧化钛/还原氧化石墨烯复合材料的制备及其光催化降解脱色性能[J]. 纺织学报, 2018,39(12):78-83.
WU Haipei, GAO Xiaohong, FANG Jing, et al. Preparation of titanium dioxide/reduced graphene oxide composite and its photocatalytic degradation and decolorization performance[J]. Journal of Textile Research, 2018,39(12):78-83.
[19] 黄敬霞. Zr、Ti氧化物/石墨烯复合材料的制备与摩擦学性能研究[D]. 兰州: 兰州理工大学, 2016: 15-16.
HUANG Jingxia. Preparation and tribological properties of Zr/Ti oxide / graphite composites[D]. Lanzhou: Lanzhou University of Technology, 2016:15-16.
[20] LUO X, WANG X, BAO S, et al. Adsorption of phosphate in water using one-stepsynthesized zirconium-loaded reduced graphene oxide[J]. Scientific Reports, 2016,6:39108.
pmid: 27974747
[21] ZHOU Y, BAO Q, TANG L A L. et al. Hydrothermal dehydration for the ″green″ reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties[J]. Chemistry of Materials, 2009,21(13):2950-2956.
[22] WANG P, WANG J, WANG X, et al. One-step synjournal of easy-recycling TiO2-rGO nanocomposite photocatalysts with enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental, 2013,132:452-459.
[23] CHEN W, YAN L, BANGAL P R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves[J]. Carbon, 2010,48(4):1146-1152.
[24] HUANG Q, GAO L. Immobilization of rutile TiO2 on multiwalled carbon nanotubes[J]. Journal of Materials Chemistry, 2003,13(7):1517-1519.
[25] ZHU J, CAO Y, HE J. Facile fabrication of transparent, broadband photoresponse, self-cleaning multifunctional graphene-TiO2 hybrid films[J]. Journal of Colloid and Interface Science, 2014,420:119-126.
doi: 10.1016/j.jcis.2014.01.015 pmid: 24559709
[26] TU W, ZHOU Y, LIU Q, et al. An in situ simultaneous reduction-hydrolysis technique for fabrication of Tio2-graphene 2D sandwich-like hybrid nanosheets: graphene-promoted selectivity of photocatalytic-driven hydrogenation and coupling of CO2 into methane and ethane[J]. Advanced Functional Materials, 2013,23(14):1743-1749.
[27] GOUMRI M, POILÂNE C, RUTERANA P, et al. Synjournal and characterization of nanocomposites films with graphene oxide and reduced graphene oxide nanosheets[J]. Chinese Journal of Physics, 2017,55(2):412-422.
[28] VILLAR-RODIL S, PAREDES J I, MARTÍNEZ-ALONSO A, et al. Preparation of graphene dispersions and graphene-polymer composites in organic media[J]. Journal of Materials Chemistry, 2009,19(22):3591-3593.
[29] 周康夫. 石墨烯基纳米复合材料的制备及功能化应用[D]. 上海:华东理工大学, 2012:10-15.
ZHOU Kangfu. Preparation and application of grapheme-based nanocomposites[D]. Shanghai:East China University of Science and Technology, 2012:10-15.
[30] 裘康. 电气石熔喷非织造布的研究与应用[D]. 天津:天津工业大学, 2006:47-48.
QIU Kang. Research and application of tourmaline melt-blown nonwovens[D]. Tianjin:Tianjin University of Technology, 2006:47-48.
[31] 王运红, 鹿学凤, 卢春华, 等. 远红外聚酯及纤维的开发[J]. 弹性体, 2006(5):43-46.
WANG Yunhong, LU Xuefeng, LU Chunhua, et al. Development of far infrared polyester and fiber[J]. Elastomer, 2006 ( 5):43-46.
[32] 俞春华, 乔鹏娟, 董文洪, 等. 含锗面料的负离子、远红外及抗菌性能测试[J]. 丝绸, 2017,54(12):17-20.
YU Chunhua, QIAO Pengjuan, DONG Wenhong, et al. Test of negative ion, far infrared and antibacterial properties of fabric containing germanium[J]. Journal of Silk, 2017,54(12):17-20.
[33] 叶民勤, 刘红, 李伟. 远红外磁性纤维及其生产方法:ZL101067225[P]. 2007-11-07.
YE Minqin, LIU Hong, LI Wei, Far-infrared agnetic fibers and their production methods: ZL101067225[P]. 2007-11-07.
[34] 孙志峰, 刘奎元, 王宗钢. 六环石添加剂及在织物整理工艺中的应用:ZL101328682[P]. 2008-12-24.
SUN Zhifeng, LIU Kuiyuan, WANG Zonggang, Hexacyclic stone additive and its application in fabric finishing process: ZL101328682 [P]. 2008-12-24.
[35] LI Y, WU D X, HU J Y, et al. Novel infrared radiation properties of cotton fabric coated with nano Zn/ZnO particles[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007,300(1/2):140-144.
[1] LOU Yaya, WANG Jing, DONG Yanchao, WANG Chunmei. Preparation and decolorization of rayon based zeoliticimidazolate framework functional material [J]. Journal of Textile Research, 2021, 42(02): 142-147.
[2] HU Jing, ZHANG Kaiwei, LI Ranran, LIN Jinyou, LIU Yuqing. Preparation of flax layered nano-cellulose and properties of its reinforced thermoelectric composites [J]. Journal of Textile Research, 2021, 42(02): 47-52.
[3] WANG Yuting, LING Zhongwen, YANG Xin, LIU Yuqing. Preparation of nano-tungsten oxide composite cotton fiber and its photochromic properties [J]. Journal of Textile Research, 2021, 42(02): 21-26.
[4] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[5] LÜ Qingtao, ZHAO Shibo, DU Peijian, CHEN Li. Research status of fatigue properties characterization and analysis methods of resin matrix composites [J]. Journal of Textile Research, 2021, 42(01): 181-189.
[6] MA Liyun, WU Ronghui, LIU Sai, ZHANG Yuze, WANG Jun. Preparation and electrical properties of triboelectric nanogenerator based on wrapped composite yarn [J]. Journal of Textile Research, 2021, 42(01): 53-58.
[7] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[8] MA Shasha, WANG Junbo, LUO Qian, SI Fang, YANG Min'ge, CHEN Ningbo, ZHANG Xiaofeng, LI Bo. Effect of nickel-phosphorus-nano-SiC-polytetrafluoroethylene electroless composite plating on lifetime of traveller for yarn spinning [J]. Journal of Textile Research, 2020, 41(12): 151-156.
[9] YANG Tiantian, WANG Ling, QIU Haipeng, WANG Xiaomeng, ZHANG Diantang, QIAN Kun. Bending property and damage mechanism of three-dimensional woven angle interlock SiCf/SiC composites [J]. Journal of Textile Research, 2020, 41(12): 73-80.
[10] LIN Chen, CHENG Ling. Research progress of stitched composites and their marine applications [J]. Journal of Textile Research, 2020, 41(12): 166-173.
[11] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
[12] CHEN Xiaoming, LI Jiao, ZHANG Yifan, XIE Junbo, LI Chenyang, CHEN Li. Design of flexible needle-punching forming system for rotary structure preform [J]. Journal of Textile Research, 2020, 41(11): 156-161.
[13] WANG Shudong, MA Qian, WANG Ke, QU Caixin, QI Yu. Structure and biocompatibility of silk fibroin/gelatin blended hydrogels [J]. Journal of Textile Research, 2020, 41(11): 41-47.
[14] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[15] LU Linna, LI Yonggui, LU Qilin. One-pot synthesis and characterization of aminated cellulose nanocrystals [J]. Journal of Textile Research, 2020, 41(10): 14-19.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!