Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (02): 119-124.doi: 10.13475/j.fzxb.20181005906

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Effect of ultrasonic assistance on morphology of silk fibroin microspheres prepared by emulsion cross-linking process

WANG Zongqian1,2(), WANG Dengfeng1, ZHOU Hang2, LI Jun1   

  1. 1. School of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. The Technical Center of Textile Dyeing and Finishing of Anhui Province, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Received:2018-10-30 Revised:2018-11-03 Online:2019-02-15 Published:2019-02-01

Abstract:

In order to solve the easy aggregation and nonuniform particle size distribution of silk fibroin blank microspheres prepared by emulsion cross-linking process, ultrasonic assistance was employed in the emulsion cross-linking process. The particle size distribution and the morphology of microspheres were measured by laser particle size analyzer and scanning electron microscopy. The results show that in the absence of the ultrasonic assistance, the microspheres prepared by emulsion cross-linking process have the average particle size of 15.08 μm with the standard deviation (SD) value of 0.515, and the aggregation is very obvious. However, in the presence of ultrasonic assistance, the average particle size decreases with the increase of ultrasonic frequency and ultrasonic power. The particle size of the microspheres prepared in the presence of the ultrasonic assistance at 45 kHz and 100 W reduces to 26% of the original one. The SD value of microspheres also decreases, indicating that ultrasonic assistance can significantly reduce the aggregation of the microspheres and promote the uniform distribution of the particle size of the microspheres.

Key words: emulsification crosslinking process, silk fibroin, blank microsphere, ultrasonic, particle size distribution

CLC Number: 

  • R318.08

Fig.1

Molecular weight distribution of silk fibroin. (a) Original image; (b) Schematic diagram"

Fig.2

Particle size distribution of blank microspheres"

Fig.3

Morphology of blank microspheres. (a) Microsphere aggregation(×500); (b) Amplification of microsphere aggregation(×1 000)"

Tab.1

Impact of ultrasonic frequency on size distribution of blank microspheres"

频率/kHz 平均粒径/μm 体积百分比*/% 标准偏差
28 11.02 28.15 0.459
45 8.52 30.24 0.436
80 3.34 32.31 0.414

Fig.4

Impact of ultrasonic frequency on morphology of microspheres(×500)"

Tab.2

Impact of ultrasonic power size distribution of blank microspheres"

功率/W 平均粒径/μm 体积百分比/% 标准偏差
40 8.52 30.24 0.436
60 7.21 30.39 0.428
80 5.92 31.04 0.421
100 4.07 31.78 0.415

Fig.5

Impact of ultrasonic power on morphology of microspheres"

[1] TZENOV P, VASILEVA J, PANTALEEVA D. Silk shell fibroin content heterosis expression in Bulgarian F1 silkworm Bombyx mori L hybrids[J]. Indian Journal of Sericulture, 2010,49(2):110-114.
[2] KUNDU B, RAJKHOWA R, KUNDU S C, et al. Silk fibroin biomaterials for tissue regenerations[J]. Advanced Drug Delivery Reviews, 2013,65(4):457-70.
pmid: 23137786
[3] HIGA K, TAKESHIMA N, MORO F, et al. Porous silk fibroin film as a transparent carrier for cultivated corneal epithelial sheets[J]. Journal of Biomaterials Science Polymer Edition, 2011,22(17):2261.
doi: 10.1163/092050610X538218 pmid: 21092419
[4] KAPOOR S, KUNDU S C. Silk protein-based hydrogels: promising advanced materials for biomedical applications[J]. Acta Biomaterialia, 2015,31:17-32.
doi: 10.1016/j.actbio.2015.11.034 pmid: 26602821
[5] 高欣, 张海萍, 陈宇, 等. 丝素蛋白多孔材料及其在组织工程领域的应用[J]. 纺织学报, 2008,29(10):132-136.
GAO Xin, ZHANG Haiping, CHEN Yu, et al. Porous silk fibroin material and its application in tissue engineering[J]. Journal of Textile Research, 2008,29(10):132-136.
[6] BHATTACHARJEE P, KUNDU B, NASKAR D, et al. Nanofibrous nonmulberry silk/PVA scaffold for osteoinduction and osseointegration[J]. Biopolymers, 2015,103(5):271-284.
doi: 10.1002/bip.22594 pmid: 25418966
[7] SRIHANAM P, SRISUWAN Y, IMSOMBUT T, et al. Silk fibroin microspheres prepared by the water-in-oil emulsion solvent diffusion method for protein de-livery[J]. Korean Journal of Chemical Engineering, 2011,28(1):293-297.
[8] 白荣. 乳酸-羟基乙酸共聚物缓释微球的制备工艺与生物学性能[J]. 中国组织工程研究, 2009,13(34):6769-6772.
BAI Rong. Preparation and biological properties of lactic acid-glycolic acid copolymer sustained release microspheres[J]. Journal of Chinese Tissue Engineering, 2009,13(34):6769-6772.
[9] RUI Y, WANG L, ZHAO J, et al. Template-free synjournal of hierarchical TiO2 hollow microspheres as scattering layer for dye-sensitized solar cells[J]. Applied Surface Science, 2016,369:170-177.
[10] JIN Y, LU H F, GUO X L, et al. The effect of water addition on the surface energy, bulk and flow properties of lignite[J]. Fuel Processing Technology, 2018,176:91-100.
[11] ZANDSTRA J, HIEMSTRA C, PETERSEN A H, et al. Microsphere size influences the foreign body reaction[J]. European Cells & Materials, 2014,28:335-347.
[12] FANG S, ZHAO H, ZHANG Q, et al. The application status and development trends of ultrasonic machining technology[J]. Journal of Mechanical Engineering, 2017,53(19):22-32.
[13] 潘岳林, 杨明英, 邓连霞, 等. 自组装方法制备丝素微球及其结构与性能表征[J]. 蚕业科学, 2015,41(4):729-733.
PAN Yuelin, YANG Mingying, DENG Lianxia, et al. Preparation of silk fibroin microspheres by self-assembly method and its structure and performance characterization[J]. Sericulture Science, 2015,41(4):729-733.
[14] 杨道伟. 丝素空白微球的制备[J]. 药学研究, 2013,32(10):590-592.
YANG Daowei. Preparation of silk fibroin blank microspheres[J]. Pharmaceutical Research, 2013,32(10):590-592.
[15] 王鼎, 朱晶心, 陈松, 等. 以丝素蛋白微球为模板制备介孔SiO2空心微球[J]. 化工新型材料, 2017(12):216-220.
WANG Ding, ZHU Jingxin, CHEN Song, et al. Preparation of mesoporous SiO2 hollow microspheres using silk fibroin microspheres as template[J]. New Chemical Materials, 2017(12):216-220.
[16] SHAN J J, ZHEN-LEI D U, QING L I, et al. Application of ultrasonic in chemical industry[J]. Hebei Journal of Industrial Science & Technology, 2009,26(2):127-130.
[17] PRITCHARD E M, KAPLAN D L. Silk fibroin biomaterials for controlled release drug delivery[J]. Expert Opinion on Drug Delivery, 2011,8(6):797-811.
doi: 10.1517/17425247.2011.568936 pmid: 21453189
[18] GUESMI A, LADHARIN, SAKLI F. Ultrasonic preparation of cationic cotton and its application in ultrasonic natural dyeing[J]. Ultrasonics Sonochemistry, 2013,20(1):571-579.
doi: 10.1016/j.ultsonch.2012.04.012 pmid: 22677454
[19] 郭生伟, 王琪, 赵越. 超声辐照乳液聚合制备聚丙烯酸正丁酯空心微球[J]. 高分子学报, 2009,1(9):891-895.
GUO Shengwei, WANG Qi, ZHAO Yue. Preparation of polybutyl n-butyl acrylate hollow microspheres by ultrasonic irradiation emulsion polymerization[J]. Acta Polymerica Sinica, 2009,1(9):891-895.
[20] 汪衍涛, 李翔龙, 刘一凡, 等. 电火花-超声复合加工法制备镍微球时非电工艺参数对镍微球尺寸的影响规律[J]. 机械工程学报, 2015,51(11):195-200.
WANG Yantao, LI Xianglong, LIU Yifan, et al. Effect of non-electrical process parameters on nickel microsphere size during preparation of nickel microspheres by electric spark-ultrasonic composite processing[J]. Journal of Mechanical Engineering, 2015,51(11):195-200.
[21] 王伟华, 姜子涛, 李荣. 超声波辅助溶胶-凝胶法制备多孔微米级钛胶微球[J]. 材料导报, 2013,27(24):53-57.
WANG Weihua, JIANG Zitao, LI Rong. Preparation of porous micron titanium adhesive microspheres by ultrasonic-assisted sol-gel method[J]. Journal of Materials Review, 2013,27(24):53-57.
[22] 王宗乾, 杨海伟, 王邓峰. 脱胶对蚕丝纤维的溶解及丝素蛋白性能的影响[J]. 纺织学报, 2018(4):69-76.
WANG Zongqian, YANG Haiwei, WANG Dengfeng. Effects of degumming on the dissolution of silk fibroin and the properties of silk fibroin[J]. Journal of Textile Research, 2018(4):69-76.
[23] WANG Z, YANG H, LI W, et al. Effect of silk degumming on the structure and properties of silk fib-roin[J]. Journal of the Textile Institute, 2018(6):1-7.
[24] 张雨青. 蚕丝脱胶方法的比较分析[J]. 蚕业科学, 2002,28(1):75-79.
ZHANG Yuqing. Comparative analysis of silk degumming methods[J]. Sericulture Science, 2002,28(1):75-79.
[25] 吴章伟, 冯新星, 朱海霖, 等. 不同溶解体系的丝素蛋白分子质量及对再生丝素膜性能的影响[J]. 蚕业科学, 2010,36(4):707-712.
WU Zhangwei, FENG Xinxing, ZHU Hailin, et al. Molecular weight of silk fibroin in different dissolution systems and its effect on the properties of regenerated silk fibroin film[J]. Sericulture Science, 2010,36(4):707-712.
[26] HAN Y, RADZIUK D, SHCHUKIN D, et al. Stability and size dependence of protein microspheres prepared by ultrasonication[J]. Journal of Materials Chemistry, 2008,18(42):5162-5166.
[1] YANG Xiaobing, CHENG Jun, ZHANG Shouxin, YAO Hong, LU Lin, DING Songtao. Particle size conversion for mask filter efficiency test and comparability of different standards [J]. Journal of Textile Research, 2020, 41(08): 152-157.
[2] WANG Zongqian, YANG Haiwei, ZHOU Jian, LI Changlong. Effect of urea degumming on mechanical properties of silk fibroin aerogels [J]. Journal of Textile Research, 2020, 41(04): 9-14.
[3] SUN Guangdong, HUANG Yi, SHAO Jianzhong, FAN Qinguo. Blue light initiated photocrosslinking of silk fibroin hydrogel [J]. Journal of Textile Research, 2020, 41(04): 64-71.
[4] ZHONG Hongrong, FANG Yan, BAO Hong, WU Tingfang, ZHANG Xiaoning, XU Shui, ZHU Yong. Preparation and properties of silk fibroin based bilayer dressing materials [J]. Journal of Textile Research, 2020, 41(02): 13-19.
[5] XIAO Zhitao, GUO Yongmin, GENG Lei, WU Jun, ZHANG Fang, WANG Wen, LIU Yanbei. Internal defect detection method for thin test pieces of woven laminated composites based on ultrasonic phased array [J]. Journal of Textile Research, 2019, 40(11): 81-87.
[6] ZHANG Zhibin, LI Gang, MAO Senxian, LI Xunxun, CHEN Yushuang, MAO Qingshan, LI Yi, PAN Zhijuan, WANG Xiaoqin. Preparation and antibacterial activity of silk fibroin/chitosan microspheres [J]. Journal of Textile Research, 2019, 40(10): 7-12.
[7] BAO Hong, XU Shui, ZHANG Xiaoning, CHENG Guotao, ZHU Yong. Cationization of Bombyx mori silk fibroin and effect there of on wool traits [J]. Journal of Textile Research, 2019, 40(07): 24-30.
[8] LIN Yongjia, YANG Dongchao, ZHANG Peihua, GU Yan. Preparation and properties of regenerated silk fibroin/acellular dermal matrix blended nanofiber membrane [J]. Journal of Textile Research, 2019, 40(07): 13-18.
[9] LI Yang, ZHANG Yuanming, JIANG Wei, ZHANG Jianming, WANG Sishe, SU Jianjun, HAN Guangting. Ultrasonic treatment of Modal fiber dyed with madder [J]. Journal of Textile Research, 2019, 40(04): 83-89.
[10] . Phosphorylation of silk fibroin and preparation of biomimetic mineralization membrane thereof [J]. Journal of Textile Research, 2018, 39(11): 8-13.
[11] . Preparation and characterization of silk fibroin /polyvinyl alcohol composite membrane [J]. Journal of Textile Research, 2018, 39(11): 14-19.
[12] . Influence of drawing ratio distribution on morphology of cellulose/silk fibroin blend fiber [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 13-18.
[13] . Novel desalination process and application of regenerated silk fibroin solution [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 20-24.
[14] . Influence of degumming on solution of silk fiber and property of fibroin [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 69-76.
[15] . Influence of  degumming process on the silk dissolution and properties of regenerated silk fibroin fibers [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(08): 75-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!