Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (10): 170-177.doi: 10.13475/j.fzxb.20191103108

• Comprehensive Review • Previous Articles     Next Articles

Research progress in formation of starch fibers and their drug-loaded controlled-release

DUAN Fangyan1, WANG Wenyu1(), JIN Xin2,3, NIU Jiarong1, LIN Tong1,4, ZHU Zhengtao1,5   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
    3. State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
    4. Future Fibers Research and Innovation Center, Deakin University, GeelongVIC3216, Australian
    5. Department of Chemistry and Applied Biological Science, South Dakota School of Mines and Technology, Rapid CitySD57701, America
  • Received:2019-11-12 Revised:2020-07-09 Online:2020-10-15 Published:2020-10-27
  • Contact: WANG Wenyu E-mail:wangwenyu@tjpu.edu.cn

Abstract:

In order to prepare drug-loaded starch nanofibers with high porosity, large specific surface area and controllable drug release properties, and promote their application in biomedical fields such as drug-loaded dressings, this paper mainly reviewed on starch fibers formation and drug loading and controlled release of the starch fibers. The preparation methods and processing characteristics of starch fibers in recent researches were systematically introduced. In view of the formation of starch fibers, the development process, performance characteristics and research progress of modified starch-based fibers, blended starch-based fibers and pure starch fibers were introduced in details. Regarding the problem of initial burst release of drug-loaded starch nanofibers in the drug release process, the influence of cross-linking methods on controlled drug release performance of starch nanofibers membrane was reviewed. Finally, the countermeasures for the difficulties and challenges faced by starch nanofibers in drug-loaded external dressings were presented, and the future research directions were proposed.

Key words: starch fiber, nanofiber, drug-loaded dressing, controlled-release, biomedical textile

CLC Number: 

  • TB34

Fig.1

Schematic diagram of influence of polymer concentration and molecular entanglement on spinnability of spinning solution"

[1] GIRAM P S, SHITOLE A, NANDE S S, et al. Fast dissolving moxifloxacin hydrochloride antibiotic drug from electrospun Eudragit L-100 nonwoven nanofibrous mats[J]. Materials Science & Engineering C:Materials for Biological Applications, 2018,92:526-539.
doi: 10.1016/j.msec.2018.06.031 pmid: 30184779
[2] MENDES A C, STEPHANSEN K, CHRONAKIS I S. Electrospinning of food proteins and polysaccharides[J]. Food Hydrocolloids, 2017,68:53-68.
doi: 10.1016/j.foodhyd.2016.10.022
[3] LIU G, GU Z, HONG Y, et al. Electrospun starch nanofibers: recent advances, challenges, and strategies for potential pharmaceutical applications[J]. Journal of Controlled Release, 2017,252:95-107.
doi: 10.1016/j.jconrel.2017.03.016 pmid: 28284833
[4] ROZ A, CARVALHO A, GANDINI A, et al. The effect of plasticizers on thermoplastic starch compositions obtained by melt processing[J]. Carbohydrate Polymers, 2006,63(3):417-424.
doi: 10.1016/j.carbpol.2005.09.017
[5] FU Z Q, WANG L J, ZOU H, et al. Studies on the starch-water interactions between partially gelatinized corn starch and water during gelatinization[J]. Carbohydrate Polymers, 2014,101:727-732.
doi: 10.1016/j.carbpol.2013.09.098
[6] MATVEEV Y I, VAN SOEST J J G, NIEMAN C, et al. The relationship between thermodynamic and structural properties of low and high amylose maize starches[J]. Carbohydrate Polymers, 2001,44(2):151-160.
doi: 10.1016/S0144-8617(00)00211-3
[7] MOHAMMADI NAFCHI A, MORADPOUR M, SAEIDI M, et al. Thermoplastic starches: properties, challenges, and prospects[J]. Starch - Starke, 2013,65(1/2):61-72.
doi: 10.1002/star.v65.1/2
[8] GOMES M E, SIKAVITSAS V I, BEHRAVESH E, et al. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds[J]. Journal of Biomedical Materials Research:Part A, 2003,67A(1):87-95.
[9] TUZLAKOGLU K, PASHKULEVA I, RODRIGUES M T, et al. A new route to produce starch-based fiber mesh scaffolds by wet spinning and subsequent surface modification as a way to improve cell attachment and proliferation[J]. Journal of Biomedical Materials Research:Part A, 2010,92(1):369-77.
doi: 10.1002/jbm.a.32358 pmid: 19191314
[10] LI X, CHEN H, YANG B. Centrifugally spun starch-based fibers from amylopectin rich starches[J]. Carbohydrate Polymers, 2016,137:459-465.
doi: 10.1016/j.carbpol.2015.10.079 pmid: 26686151
[11] JAITURONG P, SIRITHUNYALUG B, EITAYEAM S, et al. Preparation of glutinous rice starch/polyvinyl alcohol copolymer electrospun fibers for using as a drug delivery carrier[J]. Asian Journal of Pharmaceutical Sciences, 2018,13(3):239-247.
doi: 10.1016/j.ajps.2017.08.008 pmid: 32104397
[12] KOMUR B, BAYRAK F, EKREN N, et al. Starch/PCL composite nanofibers by co-axial electrospinning technique for biomedical applications[J]. Biomedical Engineering Online, 2017,16(1):40-52.
doi: 10.1186/s12938-017-0334-y pmid: 28356126
[13] MOAD G. Chemical modification of starch by reactive extrusion[J]. Progress in Polymer Science, 2011,36(2):218-237.
doi: 10.1016/j.progpolymsci.2010.11.002
[14] WANG H J, JIN X, WANG W Y, et al. Preparation and electrospinning of acidified-oxidized potato starch[J]. Advanced Materials Research, 2012, 535-537:2340-2344.
doi: 10.4028/www.scientific.net/AMR.535-537
[15] NAVARCHIAN A H, SHARAFI A, KERMANSHAHI R K. Biodegradation study of starch-graft-acrylonitrile copolymer[J]. Journal of Polymers and the Environment, 2012,21(1):233-244.
doi: 10.1007/s10924-012-0518-2
[16] HU Y, WANG Q, TANG M. Preparation and properties of starch-g-PLA/poly(vinyl alcohol) composite film[J]. Carbohydrate Polymers, 2013,96(2):384-8.
doi: 10.1016/j.carbpol.2013.04.011
[17] Al-KARAWI A J M, Al-DARAGI A H R. Preparation and using of acrylamide grafted starch as polymer drug carrier[J]. Carbohydrate Polymers, 2010,79(3):769-774.
doi: 10.1016/j.carbpol.2009.10.003
[18] SUN Z, LI M, JIN Z, et al. Starch-graft-polyacrylonitrile nanofibers by electrospinning[J]. International Journal of Biological Macromolecules, 2018,120:2552-2559.
doi: 10.1016/j.ijbiomac.2018.09.031 pmid: 30195609
[19] XU Y, MILADINOV V, HANNA M A. Synjournal and characterization of starch acetates with high substi-tution[J]. Cereal Chemistry Journal, 2004,81(6):735-740.
doi: 10.1094/CCHEM.2004.81.6.735
[20] ZHOU Q, WU J, ZHANG J, et al. Homogeneous synjournal of high-amylose starch acetates and their ultrafine fibers prepared by electrospinning[J]. Acta Polymerica Sinica, 2007 ( 7):685-688.
[21] XU W, YANG W, YANG Y. Electrospun starch acetate nanofibers: development, properties, and potential application in drug delivery[J]. Biotechnology Progress, 2009,25(6):1788-95.
doi: 10.1002/btpr.242 pmid: 19637387
[22] YANG J, JIN X, WANG W Y, et al. Synjournal of starch acetates and electrospinning[J]. Advanced Materials Research, 2013, 785-786:1031-1035.
doi: 10.4028/www.scientific.net/AMR.785-786
[23] XU W, YANG Y. Drug release and its relationship with kinetic and thermodynamic parameters of drug sorption onto starch acetate fibers[J]. Biotechnology Bioengineering, 2010,105(4):814-22.
doi: 10.1002/bit.22594 pmid: 19882717
[24] REDDY N, YANG Y. Preparation and properties of starch acetate fibers for potential tissue engineering applications[J]. Biotechnology Bioengineering, 2009,103(5):1016-22.
doi: 10.1002/bit.22331 pmid: 19360891
[25] YUSOF M R, SHAMSUDIN R, ABDULLAH Y, et al. Electrospinning of carboxymethyl starch/poly(L-lactide acid) composite nanofiber[J]. Polymers for Advanced Technologies, 2018,29(6):1843-1851.
doi: 10.1002/pat.v29.6
[26] GIRI DEV V R, HEMAMALINI T. Porous electrospun starch rich polycaprolactone blend nanofibers for severe hemorrhage[J]. International Journal of Biological Macromolecules, 2018,118:1276-1283.
doi: 10.1016/j.ijbiomac.2018.06.163 pmid: 29964114
[27] LIU Z, HE J H. Polyvinyl alcohol/starch composite nanofibers by bubble electrospinning[J]. Thermal Science, 2014,18(5):1473-1475.
doi: 10.2298/TSCI1405473L
[28] LI X, LU Y, HOU T, et al. Centrifugally spun ultrafine starch/PEO fibres as release formulation for poorly water-soluble drugs[J]. Micro & Nano Letters, 2018,13(12):1688-1692.
[29] OKTAY B, BASTURK E, KAYAMAN-APOHAN N, et al. Highly porous starch/poly(ethylene-alt-maleic anhydride) composite nanofiber mesh[J]. Polymer Composites, 2013,34(8):1321-1324.
doi: 10.1002/pc.22545
[30] ZHANG H B, ZHU M, YOU R Q. Modified biopolymer scaffolds by co-axial electrospinning[J]. Polymer Composites, 2010, 160-162:1062-1066.
[31] AMINI M, ARASH HADDADI S, GHADERI S, et al. Preparation and characterization of PVDF/starch nanocomposite nanofibers using electrospinning method[J]. Materials Today: Proceedings, 2018,5(7):15613-15619.
doi: 10.1016/j.matpr.2018.04.170
[32] WANG Q, ZHANG N, HU X, et al. Chitosan/starch fibers and their properties for drug controlled release[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2007,66(3):398-404.
doi: 10.1016/j.ejpb.2006.11.011 pmid: 17196808
[33] WANG Q, HU X, DU Y, et al. Alginate/starch blend fibers and their properties for drug controlled release[J]. Carbohydrate Polymers, 2010,82(3):842-847.
doi: 10.1016/j.carbpol.2010.06.004
[34] JUKOLA H, NIKKOLA L, GOMES M E, et al. Electrospun starch-polyeaprolactone nanofiber-based constructs for tissue engineering[J]. Multiscale and Functionally Graded Materials, 2008,973:971-974.
[35] JAITURONG P, SUTJARITTANGTHAM K, EITSSAYEAM S, et al. Preparation of glutinous rice starch nanofibers by electrospinning[J]. Advanced Materials Research, 2012,506:230-233.
doi: 10.4028/www.scientific.net/AMR.506
[36] STIJNMAN A C, BODNER I, TROMP R H. Electrospinning of food-grade polysaccharides[J]. Food Hydrocolloids, 2011,25(5):1393-1398.
doi: 10.1016/j.foodhyd.2011.01.005
[37] ABURTO J, ALRIC I, BORREDON E. Organic solvent-free transesterification of various starches with lauric acid methyl ester and triacyl glycerides[J]. Starch - Starke, 2005,57(3/4):145-152.
doi: 10.1002/(ISSN)1521-379X
[38] ABURTO J, ALRIC I, BORREDON E. Preparation of long-chain esters of starch using fatty acid chlorides in the absence of an organic solvent[J]. Starch-Starke, 1999,51(4):132-135.
doi: 10.1002/(ISSN)1521-379X
[39] LANCUSKI A, VASILYEV G, PUTAUX J L, et al. Rheological properties and electrospinnability of high-amylose starch in formic acid[J]. Biomacromolecules, 2015,16(8):2529-36.
doi: 10.1021/acs.biomac.5b00817 pmid: 26192477
[40] FONSECA L M, DA SILVA F T, ANTUNES M D, et al. Aging time of soluble potato starch solutions for ultrafine fibers formation by electrospinning[J]. Starch-Starke, 2018.DOI: 10.1002/star.201800089.
[41] FONSECA L M, DE OLIVEIRA J P, DE OLIVEIRA P D, et al. Electrospinning of native and anionic corn starch fibers with different amylose contents[J]. Food Research International, 2019,116:1318-1326.
doi: 10.1016/j.foodres.2018.10.021 pmid: 30716921
[42] MUKERJEA R, MUKERJEA R, ROBYTJ F. Controlled peeling of the surfaces of starch granules by gelatinization in aqueous dimethyl sulfoxide at selected temperatures[J]. Carbohydrate Research, 2006,341(6):757-65.
doi: 10.1016/j.carres.2006.01.025 pmid: 16472789
[43] COOREMAN F L, RENSBURG H V, DELCOUR J A. Pasting profiles and solubility of native and cross-linked corn starch in dimethyl sulfoxide-water mixtures[J]. Journal of Cereal Science, 1995,22(3):251-257.
doi: 10.1006/jcrs.1995.0061
[44] KONG L, ZIEGLER G R. Fabrication of pure starch fibers by electrospinning[J]. Food Hydrocolloids, 2014,36:20-25.
doi: 10.1016/j.foodhyd.2013.08.021
[45] KONG L, ZIEGLER G R. Role of molecular entanglements in starch fiber formation by electrospinning[J]. Biomacromolecules, 2012,13(8):2247-53.
doi: 10.1021/bm300396j
[46] CARDENAS W, GOMEZ-PACHON E Y, MUNOZ E, et al. Preparation of potato starch microfibers obtained by electro wet spinning[J]. IOP Conference Series: Materials Science and Engineering, 2016.DOI: 10.1088/1757-899X/138/1/012001.
doi: 10.1088/1757-899X/279/1/012021 pmid: 30197666
[47] WANG W, JIN X, ZHU Y, et al. Effect of vapor-phase glutaraldehyde crosslinking on electrospun starch fibers[J]. Carbohydrate Polymers, 2016,140:356-61.
doi: 10.1016/j.carbpol.2015.12.061 pmid: 26876862
[48] LEE J H, YOU S, KWEON D K, et al. Dissolution behaviors of waxy maize amylopectin in aqueous-DMSO solutions containing NaCl and CaCl2[J]. Food Hydrocolloids, 2014,35:115-121.
doi: 10.1016/j.foodhyd.2013.05.003
[49] JACKSON D S. Solubility behavior of granular corn starches in methyl sulfoxide (DMSO) as measured by high performance size exclusion chromatography[J]. Starch - Starke, 1991,43(11):422-427.
doi: 10.1002/(ISSN)1521-379X
[50] WANG W, WANG H, JIN X, et al. Effects of hydrogen bonding on starch granule dissolution, spinnability of starch solution, and properties of electrospun starch fibers[J]. Polymer, 2018,153:643-652.
doi: 10.1016/j.polymer.2018.08.067
[51] TANG S, ZHAO Z, CHEN G, et al. Fabrication of ampicillin/starch/polymer composite nanofibers with controlled drug release properties by electrospinning[J]. Journal of Sol-Gel Science and Technology, 2015,77(3):594-603.
doi: 10.1007/s10971-015-3887-x
[52] KAPELKO M, ZIEBA T, MICHALSKI A, et al. Effect of cross-linking degree on selected properties of retrograded starch adipate[J]. Food Chemistry, 2015,167:124-30.
doi: 10.1016/j.foodchem.2014.06.096 pmid: 25148968
[53] ZHONG K, LIN Z T, ZHENG X L, et al. Starch derivative-based superabsorbent with integration of water-retaining and controlled-release fertilizers[J]. Carbohydrate Polymers, 2013,92(2):1367-76.
doi: 10.1016/j.carbpol.2012.10.030
[54] DAS K, RAY D, BANDYOPADHYAY N R, et al. Preparation and characterization of cross-linked starch/poly(vinyl alcohol) green films with low moisture absorption[J]. Industrial & Engineering Chemistry Research, 2010,49(5):2176-2185.
[55] LIU Z, JIANG M, BAI X, et al. Effect of postcrosslinking modification with glutaraldehyde on the properties of thermoplastic starch/poly(vinyl alcohol) blend films[J]. Journal of Applied Polymer Science, 2012,124(5):3774-3781.
doi: 10.1002/app.v124.5
[56] REDDY N, YANG Y. Citric acid cross-linking of starch films[J]. Food Chemistry, 2010,118(3):702-711.
doi: 10.1016/j.foodchem.2009.05.050
[57] SUN S, LIU P, JI N, et al. Effects of various cross-linking agents on the physicochemical properties of starch/PHA composite films produced by extrusion blowing[J]. Food Hydrocolloids, 2018,77:964-975.
doi: 10.1016/j.foodhyd.2017.11.046
[58] XU H, CANISAG H, MU B, et al. Robust and flexible films from 100% starch cross-linked by biobased disaccharide derivative[J]. ACS Sustainable Chemistry & Engineering, 2015,3(11):2631-2639.
[59] LI X, HOU T, LU Y, et al. Citric acid cross-linking of centrifugally spun starch-based fibres[J]. Micro & Nano Letters, 2017,12(9):693-696.
[60] WAGHMARE V S, WADKE P R, DYAWANAPELLY S, et al. Starch based nanofibrous scaffolds for wound healing applications[J]. Bioactive Materials, 2018,3(3):255-266.
doi: 10.1016/j.bioactmat.2017.11.006 pmid: 29744465
[61] WADKE P, CHHABRA R, JAIN R, et al. Silver-embedded starch-based nanofibrous mats for soft tissue engineering[J]. Surfaces and Interfaces, 2017,8:137-146.
doi: 10.1016/j.surfin.2017.05.008
[1] WANG He, WANG Hongjie, RUAN Fangtao, FENG Quan. Preparation and properties of carbon nanofiber electrode made from electrospun polyacrylonitrile/linear phenolic resin [J]. Journal of Textile Research, 2021, 42(01): 22-29.
[2] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[3] SUN Qian, KAN Yan, LI Xiaoqiang, GAO Dekang. Preparation and performance of colorimetric humidity sensor using polyacrylonitrile/CoCl2 nanofibers [J]. Journal of Textile Research, 2020, 41(11): 27-33.
[4] WANG Liyuan, KANG Weimin, ZHUANG Xupin, JU Jingge, CHENG Bowen. Preparation and properties of composite proton exchange membranes based on sulfonated polyethersulfone nanofibers [J]. Journal of Textile Research, 2020, 41(11): 19-26.
[5] LI Haoyi, XU Hao, CHEN Mingjun, YANG Tao, CHEN Xiaoqing, YAN Hua, YANG Weimin. Research progress of noise reduction by nanofibers [J]. Journal of Textile Research, 2020, 41(11): 168-173.
[6] WANG Zixi, HU Yi. Preparation and energy storage of porous carbon nanofibers based on ZnCo2O4 [J]. Journal of Textile Research, 2020, 41(11): 10-18.
[7] PAN Lu, CHENG Tingting, XU Lan. Preparation of polycaprolactone/polyethylene glycol nanofiber membranes with large pore sizes and its application for tissue engineering scaffold [J]. Journal of Textile Research, 2020, 41(09): 167-173.
[8] DUO Yongchao, QIAN Xiaoming, ZHAO Baobao, QIAN Yao, ZOU Zhiwei. Preparation and properties of microfiber synthetic leather base [J]. Journal of Textile Research, 2020, 41(09): 81-87.
[9] YANG Kai, ZHANG Xiaomei, JIAO Mingli, JIA Wanshun, DIAO Quan, LI Yong, ZHANG Caiyun, CAO Jian. Preparation and adsorption performance of high-ortho phenolic resin based activated carbon nanofibers [J]. Journal of Textile Research, 2020, 41(08): 1-8.
[10] FANG Zhou, SONG Leilei, SUN Baojin, LI Wenxiao, ZHANG Chao, YAN Jun, CHEN Lei. Research progress in structure design of carbon nanofibers and their adsorption mechanism and applications toward sewage pollutants [J]. Journal of Textile Research, 2020, 41(08): 135-144.
[11] DUAN Hongmei, WANG Ximing, HUANG Zixin, GAO Jing, WANG Lu. Construction and drug release properties of fiber-based mesoporous SiO2 drug carrier [J]. Journal of Textile Research, 2020, 41(07): 15-22.
[12] WU Hong, LIU Chengkun, MAO Xue, YANG Zhi, CHEN Meiyu. Research progress in preparation and application of flexible zirconia nanofibers by electrospinning [J]. Journal of Textile Research, 2020, 41(07): 167-173.
[13] WANG Shubo, QIN Xiangpu, SHI Lei, ZHUANG Xupin, LI Zhenhuan. Preparation and properties of proton exchange membrane made from graphene oxide quantum dots / polyacrylonitrile nanofiber composites [J]. Journal of Textile Research, 2020, 41(06): 8-13.
[14] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
[15] HONG Xianliang, CHEN Xiaohui, ZHANG Jianqing, LIU Junjie, HUANG Chen, DING Yike, HONG Hui. Research progress in preparation of hierarchically structured air filter materials by electrospinning [J]. Journal of Textile Research, 2020, 41(06): 174-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!