Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (11): 189-196.doi: 10.13475/j.fzxb.20200200408

• Comprehensive Review • Previous Articles    

Recent progress in super wettable textiles for oil-water separation

YU Yucong1,2, SHI Xiaolong2, LIU Lin2, YAO Juming2()   

  1. 1. College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2020-02-03 Revised:2020-07-26 Online:2020-11-15 Published:2020-11-26
  • Contact: YAO Juming E-mail:yaoj@zstu.edu.cn

Abstract:

With the destruction of industrial oily wastewater to the global water environment, the application of ultra-wetting textiles in the field of oil-water separation has become a research hotspot in recent years. In order to promote the development and application of ultra-wetting textiles, the research progress of separation and purification of oily wastewater from ultra-wetting textiles was reviewed. The methods of developing super hydrophobicity/super hydrophilic, super hydrophilic/underwater super hydrophobicity are classified, and the limitations of single wetting material in practical application are analyzed. In order to deal with the large displacement and multi-component oily wastewater, the Janus wettability, intelligent wettability and multi-functional oil-water separation material are effective way to purify the complex oil-water wastewater. Based on the research progress of new ultra-wetting textiles, the current challenges and future research directions are discussed. In the future, as the composition of oily wastewater becomes more and more complex, the difficulty of collection and purification increases, it is of great significance to develop green, sustainable and multi-functional composite superwetting textile.

Key words: oil-water separation, textiles, Janus material, intelligently responsive material, super wettability, wastewater treatment

CLC Number: 

  • X791

Fig.1

Different methods for roughing the smooth surfaces. (a)Etching;(b)Particle decoration;(c)In situ growth"

Tab.1

Oil/water separation textiles with composite functions"

文献 复合功能类别 基底 功能物质 制备方法 分离净化性能
[41] 分离不同类型乳液、去除表面活性剂 聚丙烯滤膜 聚多巴胺、多乙烯多胺 分步浸渍 乳液分离效率为99.5%;表面活性剂去除率为95.7%
[46] pH值和紫外光双响应、光催化、去除铜离子 聚丙烯非
织造布
纤维素纳米晶/氧化锌 原位沉积 铜离子去除率为74%;紫外光照射3 h去除91.2%染料
[47] 物理自清洁、耐强酸 涤/棉织物 TiO2-SiO2/ PDMS 溶胶-凝胶法 低滑动角小于5°;强酸浸泡100 h保持150°水接触角,重力导向下可分离水/石油混合物
[48] 物理自清洁作用 棉织物 TiO2微纳米颗粒 水热法 水接触角大于160°,滑动角小于6°,重力导向下分离石油醚和水
[49] 光催化作用 聚酯非织造布 TiO2粒子、笼状倍半硅氧烷 浸渍、硫醇烯反应 分离效率为99%;紫外光照射6 h可几乎完全去除废水中的染料
[50] 光催化、抗菌活性 棉织物 Ag/ZnO粒子 浸渍,原位沉积 100%抑菌率;紫外光照射1.5 h去除90%染料
[51] pH值响应、抗强酸碱、抗菌 棉织物、滤纸 SiO2粒子、聚乙烯亚胺 黏合剂 分离效率为99.9%;通量高达2×104 L/(m2·h)
[1] SCHROPE M. Oil spill: deep wounds[J]. Nature, 2011,472(7342):152-154.
doi: 10.1038/472152a pmid: 21490648
[2] RONG J, QIU F, ZHANG T, et al. A facile strategy toward 3D hydrophobic composite resin network decorated with biological ellipsoidal structure rapeseed flower carbon for enhanced oils and organic solvents selective absorption[J]. Chemical Engineering Journal, 2017,322:397-407.
[3] YUAN D, TAO Z, QING G, et al. Recyclable biomass carbon@SiO2@MnO2 aerogel with hierarchical architectures for fast and selective oil-water separa-tion[J]. Chemical Engineering Journal, 2018,351:622-630.
[4] PADAKI M, MURALI RS, ABDULLAH MS, et al. Membrane technology enhancement in oil-water separation: a review[J]. Desalination, 2015,357:197-207.
[5] LI S H, HUANG J Y, CHEN Z, et al. A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applica-tions[J]. Journal of Materials Chemistry A, 2017,5(1):31-55.
[6] ZHOU H, GUO Z. Superwetting Janus membranes: focusing on unidirectional transport behaviors and multiple applications[J]. Journal of Materials Chemistry A, 2019,7(21):12921-12950.
[7] LI L J, RONG L D, XU Z T, et al. Cellulosic sponges with pH responsive wettability for efficient oil-water separation[J]. Carbohydrate Polymers, 2020. DOI: 10.1016/j.carbpol.2020.116133.
doi: 10.1016/j.carbpol.2020.117565 pmid: 33483066
[8] BAOS Z, CHEN D, LI N, et al. Superamphiphilic and underwater superoleophobic membrane for oil/water emulsion separation and organic dye degradation[J]. Journal of Membrane Science, 2020. DOI: 10.1016/j.memsci.2019.117804.
pmid: 26207081
[9] DENG Y, HAN D, DENG Y, et al. Facile one-step preparation of robust hydrophobic cotton fabrics by covalent bonding polyhedral oligomeric silsesquioxane for ultrafast oil/water separation[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2019.122391.
doi: 10.1016/j.cej.2020.126340 pmid: 32848507
[10] ZHANG W, LI X, QU R, et al. Janus membrane decorated via a versatile immersion-spray route: controllable stabilized oil/water emulsion separation satisfying industrial emission and purification criteria[J]. Journal of Materials Chemistry A, 2019,7(9):4941-4949.
[11] CHEN J, ZHOU Y, ZHOU C, et al. A durable underwater superoleophobic and underoil superhydrophobic fabric for versatile oil/water separa-tion[J]. Chemical Engineering Journal, 2019,370:1218-1227.
[12] CHENG Y, ZHU T, LI S H, et al. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching[J]. Chemical Engineering Journal, 2019,355:290-298.
[13] JI W, WANG H, YAO Y, et al. Mg(OH)2 and PDMS-coated cotton fabrics for excellent oil/water separation and flame retardancy[J]. Cellulose, 2019,26(11):6879-6890.
[14] LI X P, CAO M, SHAN H T, et al. Facile and scalable fabrication of superhydrophobic and superoleophilic PDMS-co-PMHS coating on porous substrates for highly effective oil/water separation[J]. Chemical Engineering Journal, 2019,358:1101-1113.
[15] 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020,41(4):106-111.
TAN Lin, SHI Yidong, ZHOU Wenya. Study on enhancement of hydrophobicity treatment of cotton fabrics using silica sol[J]. Journal of Textile Research, 2020,41(4):106-111.
[16] ZHANG Z, WANG H, LIANG Y, et al. One-step fabrication of robust superhydrophobic and superoleophilic surfaces with self-cleaning and oil/water separation function[J]. Scientific Reports, 2018,8:3869-3877.
doi: 10.1038/s41598-018-22241-9 pmid: 29497169
[17] GONG X, WANG Y, ZENG H, et al. Highly porous, hydrophobic, and compressible cellulose nanocrystals/poly(vinyl alcohol) aerogels as recyclable absorbents for oil-water separation[J]. ACS Sustainable Chemistry & Engineering, 2019,7(13):11118-11128.
[18] LIU Y N, QU R X, ZANG W F, et al. Lotus- and mussel-inspired PDA-PET/PTFE janus membrane: toward integrated separation of light and heavy oils from water[J]. Acs Applied Materials & Interfaces, 2019,11(22):20545-20556.
pmid: 31082194
[19] ZHANG G W, JIA X Y, XING J L, et al. A facile and fast approach to coat various substrates with Poly(styrene-co-maleic anhydride) and polyethyleneimine for oil/water separation[J]. Industrial & Engineering Chemistry Research, 2019,58(42):19475-19485.
[20] RATHER A M, MANNA U. Stretchable and durable superhydrophobicity that acts both in air and under oil[J]. Journal of Materials Chemistry A, 2017,5(29):15208-15216.
[21] REN J P, TAO F R, LIU L B, et al. A novel TiO2@stearic acid/chitosan coating with reversible wettability for controllable oil/water and emulsions separation[J]. Carbohydrate Polymers, 2020. DOI: 10.1016/j.carbpol.2019.115807.
doi: 10.1016/j.carbpol.2020.117565 pmid: 33483066
[22] CAO C Y, WANG F, LU M. Preparation of superhydrophobic CuS cotton fabric with photocatalytic and antibacterial activity for oil/water separation[J]. Materials Letters, 2020,260:4.
[23] XUE C H, GUO X J, ZHANG M M, et al. Fabrication of robust superhydrophobic surfaces by modification of chemically roughened fibers via thiol-ene click chemistry[J]. Journal of Materials Chemistry A, 2015,3(43):21797-21804.
[24] ZHAO P, QIN N, REN C L, et al. Surface modification of polyamide meshes and nonwoven fabrics by plasma etching and a PDA/cellulose coating for oil/water separation[J]. Applied Surface Science, 2019,481:883-891.
[25] YANG M P, LIU W Q, LIANG L Y, et al. A mild strategy to construct superhydrophobic cotton with dual self-cleaning and oil-water separation abilities based on TiO2 and POSS via thiol-ene click reaction[J]. Cellulose, 2020,27:2847-2857.
doi: 10.1007/s10570-019-02963-3
[26] LI H Q, LIANG T, LAI X J, et al. Vapor-liquid interfacial reaction to fabricate superhydrophilic and underwater superoleophobic thiol-ene/silica hybrid decorated fabric for oil/water separation[J]. Applied Surface Science, 2018,427:92-101.
[27] YANG M P, LIU W Q, JIANG C, et al. Facile construction of robust superhydrophobic cotton textiles for effective UV protection, self-cleaning and oil-water separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019,570:172-181.
[28] XU B, DING Y, QU S, et al. Superamphiphobic cotton fabrics with enhanced stability[J]. Applied Surface Science, 2015,356:951-957.
[29] YANG Y, GUO Z, HUANG W, et al. Fabrication of multifunctional textiles with durable antibacterial property and efficient oil-water separation via in situ growth of zeolitic imidazolate framework-8 (ZIF-8) on cotton fabric[J]. Applied Surface Science, 2020. DOI: 10.1016/j.apsusc.2019.144079.
doi: 10.1016/j.apsusc.2016.03.212 pmid: 27397949
[30] ZHAN B, LIU Y, LI S Y, et al. Fabrication of superwetting Cu@Cu2O cubic film for oil/water emulsion separation and photocatalytic degradation[J]. Applied Surface Science, 2019,496:11.
[31] TRUPP F, TORASSO N, GRONDONA D, et al. Hierarchical selective membranes combining carbonaceous nanoparticles and commercial permeable substrates for oil/water separation[J]. Separation and Purification Technology, 2020,234:12.
[32] LI N, PRANANTYO D, KANG E T, et al. In situ self-assembled polyoxotitanate cages on flexible cellulosic substrates: multifunctional coating for hydrophobic, antibacterial, and UV-blocking applications[J]. Advanced Functional Materials, 2018,28(23):9.
[33] YUE C, LING L, XUE Z, et al. Filefish-inspired surface design for anisotropic underwater oleophobi-city[J]. Advanced Functional Materials, 2014,24(6):808-818.
[34] 张欢, 闫俊, 王晓武, 等. 低温等离子体在涤纶表面改性中的应用[J]. 纺织学报, 2019,40(7):103-107.
ZHANG Huan, YAN Jun, WANG Xiaowu, et al. Application of low temperature plasma in surface modification of polyester fiber[J]. Journal of Textile Research, 2019,40(7):103-107.
[35] SHI H, HE Y, PAN Y, et al. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation[J]. Journal of Membrane Science, 2016,506:60-70.
[36] ZUO J H, GU Y H, WEI C, et al. Janus polyvinylidene fluoride membranes fabricated with thermally induced phase separation and spray-coating technique for the separations of both W/O and O/W emulsions[J]. Journal of Membrane Science, 2020. DOI: 10.1016/j.memsci.2019.117475.
doi: 10.1016/j.memsci.2014.08.042 pmid: 26207081
[37] LI X, ZHANG W, QU R, et al. Asymmetric superwetting configuration of Janus membranes based on thiol-ene clickable silane nanospheres enabling on-demand and energy-efficient oil-water remediation[J]. Journal of Materials Chemistry A, 2019,7(16), 10047-10057.
[38] HONG S K, BAE S, JEON H, et al. Underwater superoleophobic nanofibrous cellulosic membrane for oil/water separation with high separation flux and high chemical stability[J]. Nanoscale, 2018,10:3037-3045.
doi: 10.1039/c7nr08199e pmid: 29376157
[39] CHENG Q, YE D, CHANG C, et al. Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation[J]. Journal of Membrane Science, 2017,525:1-8.
doi: 10.1016/j.memsci.2016.11.084
[40] LI S, HUANG J, CHEN Z, et al. Review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications[J]. Journal of Materials Chemistry A, 2017,5(1):31-55.
doi: 10.1039/C6TA07984A
[41] ZHANG W, QU R, LI X, et al. A dual functional Janus membrane combining superwettability with electrostatic force for controllable anionic/cationic emulsion separation and in situ surfactant removal[J]. Journal of Materials Chemistry A, 2019,7(47):27156-27163.
[42] YUE X, ZHANG T, YANG D, et al. Janus ZnO-cellulose/MnO2 hybrid membranes with asymmetric wettability for highly-efficient emulsion separations[J]. Cellulose, 2018,25:5951-5965.
[43] ZHANG W, LIU N, ZHANG Q, et al. Thermo-driven controllable emulsion separation by a polymer-decorated membrane with switchable wettability[J]. Angewandte Chemie International Edition, 2018,57(20):5740-5745.
doi: 10.1002/anie.201801736 pmid: 29578276
[44] CHE H, HUO M, PENG L, et al. CO2-responsive nanofibrous membranes with switchable oil/water wettability[J]. Angewandte Chemie (International Edition), 2015,54(31):8934-8938.
[45] LI W X, JU B Z, ZHANG S F. Novel amphiphilic cellulose nanocrystals for pH-responsive Pickering emulsions[J]. Carbohydrate Polymers, 2020,229:10.
[46] WANG D C, YANG X G, YU H Y, et al. Smart nonwoven fabric with reversibly dual-stimuli responsive wettability for intelligent oil-water separation and pollutants removal[J]. Journal of Hazardous Materials, 2020,383:11.
[47] DENG Z Y, WANG W, MAO L H, et al. Versatile superhydrophobic and photocatalytic films generated from TiO2-SiO2@PDMS and their applications on fabrics[J]. Journal of Materials Chemistry A, 2014,2(12):4178-4184.
[48] LI S, HUANG J, GE M, et al. Self-cleaning cotton: robust flower-like TiO2@cotton fabrics with special wettability for effective self-cleaning and versatile oil/water separation[J]. Advanced Materials Interfaces, 2015. DOI: 10.1002/admi.201500220.
doi: 10.1002/admi.201400158 pmid: 26900544
[49] ZHANG W, LU X, XIN Z, et al. A self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation[J]. Nanoscale, 2015,7(46):19476-19483.
doi: 10.1039/c5nr06425b pmid: 26530425
[50] MANNA J, GOSWAMI S, SHILPA N, et al. Biomimetic method to assemble nanostructured Ag@ZnO on cotton fabrics: application as self-cleaning flexible materials with visible-Light photocatalysis and antibacterial activities[J]. Acs Applied Materials & Interfaces, 2015,7(15):8076-8082.
doi: 10.1021/acsami.5b00633 pmid: 25823715
[51] WANG F, PI J, LI J Y, et al. Highly-efficient separation of oil and water enabled by a silica nanoparticle coating with pH-triggered tunable surface wettability[J]. Journal of Colloid and Interface Science, 2019,557:65-75.
doi: 10.1016/j.jcis.2019.08.114 pmid: 31514094
[1] CHEN Yunbo, ZHU Xiangyu, LI Xiang, YU Hong, LI Weidong, XU Hong, SUI Xiaofeng. Recent advance in preparation of thermo-regulating textiles based on phase change materials [J]. Journal of Textile Research, 2021, 42(01): 167-174.
[2] YANG Gang, LI Haidi, QIAO Yansha, LI Yan, WANG Lu, HE Hongbing. Preparation and characterization of polylactic acid-caprolactone/fibrinogen nanofiber based hernia mesh [J]. Journal of Textile Research, 2021, 42(01): 40-45.
[3] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[4] XIA Yun, LÜ Wangyang, CHEN Wenxing. Catalytic degradation of dye by metal phthalocyanine /multi-walled carbon nanotubes under simulated solar light [J]. Journal of Textile Research, 2020, 41(12): 94-101.
[5] SONG Yingqi, PAN Jiahao, WU Liguang, WANG Ting, DONG Chunying. Fabrication of photocatalytic floating spheres for degradation of methyl-orange under illumination of visible light [J]. Journal of Textile Research, 2020, 41(12): 102-110.
[6] ZHANG Qian, MAO Jifu, LÜ Luyao, XU Zhongmian, WANG Lu. Abrasion resistance of suture at anchor eyelet for tendon-bone repair and its influencing factors [J]. Journal of Textile Research, 2020, 41(12): 66-72.
[7] ZHANG Yanyan, ZHAN Luyao, WANG Pei, GENG Junzhao, FU Feiya, LIU Xiangdong. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 174-180.
[8] QIAO Yansha, WANG Qian, LI Yan, SANG Jiawen, WANG Lu. Preparation and in vitro inflammation evaluation of polydopamine coated polypropylene hernia mesh [J]. Journal of Textile Research, 2020, 41(09): 162-166.
[9] YAN Jia, LI Gang. Research progress on medical textiles [J]. Journal of Textile Research, 2020, 41(09): 191-200.
[10] QIU Kebin, CHEN Weiguo, ZHOU Hua, YING Shuangshuang. Research and development of textile color measurement based on imaging technologies [J]. Journal of Textile Research, 2020, 41(09): 155-161.
[11] PANG Yali, MENG Jiayi, LI Xin, ZHANG Qun, CHEN Yankun. Preparation of graphene fibers by wet spinning and fiber characterization [J]. Journal of Textile Research, 2020, 41(09): 1-7.
[12] CHEN Wendou, ZHANG Hui, CHEN Tianyu, WU Hailiang. Self-cleaning properties of titanium dioxide modified polyester/cotton blend fabrics [J]. Journal of Textile Research, 2020, 41(07): 122-128.
[13] LIU Guojin, SHI Feng, CHEN Xinxiang, ZHANG Guoqing, ZHOU Lan. Preparation of polyurethane/phase change wax functional finishing agents for heat storage and temperature regulation and their applications on cotton fabrics [J]. Journal of Textile Research, 2020, 41(07): 129-134.
[14] QIAN Yifan, ZHOU Tang, ZHANG Liying, LIU Wanshuang, FENG Quan. Preparation of polyacrylonitrile / cellulose acetate / TiO2 composite nanofiber membrane and its photocatalytic degradation performance [J]. Journal of Textile Research, 2020, 41(05): 8-14.
[15] CHEN Hui, WANG Xi, DING Xin, LI Qiao. Design of temperature-sensitive garment consisting of full fabric sensing networks [J]. Journal of Textile Research, 2020, 41(03): 118-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!