Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (12): 54-58.doi: 10.13475/j.fzxb.20200303105

• Textile Engineering • Previous Articles     Next Articles

Effect of open/closed air layer on thermal protective performance of flame-resistant fabrics

WANG Qi1, TIAN Miao1,2(), SU Yun1,2, LI Jun1,2, YU Mengfan1, XU Xiao1   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2020-03-11 Revised:2020-07-31 Online:2020-12-15 Published:2020-12-23
  • Contact: TIAN Miao E-mail:tianmiao@dhu.edu.cn

Abstract:

To investigate the effects of heat transfer modes on appearance and thermal protective performance of thermal protective clothing with an air layer, the thermal protective performance (TPP) tester was established to simulate the actual spatial relationship between the human skin and garment with an open or closed air layer. Color image processing was used to evaluate the shrinkage of the fabrics before and after the heat exposure. The heat transfer and thermal protective performance of the “fabric-air layer” system were evaluated from the perspectives of energy transfer, TPP value and second degree burn time. Experimental results reveal that the presence of air layer decreases the heat transfer efficiency and improves the thermal protective performance of the flame-resistant fabrics. However, it also accelerates the aging and thermal shrinkage of the fabrics. When the heat exchange path between the air layer and the surrounding environment is opened, the fluid flow of heat within the air space becomes much sophisticated, and the thermal protective performance of fabric is further improved.

Key words: flame-resistant fabric, open air layer, closed air layer, heat transfer mode, thermal protective performance

CLC Number: 

  • TS941.73

Tab.1

Basic physical properties of specimens"

试样
编号
织物名称 纤维成分及含量 组织
结构
织物密度/
(根·(10 cm)-1)
面密度/
(g·m-2)
厚度/
mm
经向 纬向
N1 Nomex®ШA 间位芳纶/对位芳纶/抗静电纤维(93/5/2) 平纹 184 160 240 0.50
N2 Nomex®ШA 间位芳纶/对位芳纶/抗静电纤维(93/5/2) 平纹 143 153 250 0.52
N3 Kevlar 对位芳纶/间位芳纶(60/40) 平纹 214 192 200 0.34

Fig.1

Schematic diagram of three modes of air layer. (a) Device without air layer; (b) Device with closed air layer; (c) Device with open air layer"

Fig.2

Images of N1, N2 and N3 samples after heat exposure for 4.5 s at device without air layer (a), with closed air layer (b) and open air layer (c)"

Tab.2

Area retention rates of N1 and N2 samples after TPP test"

空气层形式 热暴露时间/s RN1/% RN2/%
无空气层 3.5 99.8 90.1
4.5 95.0 86.9
5.5 93.9 86.1
封闭式
空气层
3.5 94.2 87.8
4.5 90.0 87.3
5.5 92.1 85.4
开放式
空气层
3.5 94.0 85.2
4.5 92.6 82.5
5.5 86.6 81.9

Tab.3

Temperature rise of copper sensor"

空气层形式 热暴露时间/s ΔT1/℃ ΔT2/℃ ΔT3/℃
3.5 2.73 3.10 5.43
无空气层 4.5 6.27 6.77 11.10
5.5 12.80 11.80 18.90
封闭式
空气层
3.5 1.23 1.40 2.43
4.5 3.17 3.33 4.83
5.5 5.97 5.63 8.83
开放式
空气层
3.5 0.70 0.87 1.53
4.5 1.90 2.20 3.43
5.5 2.83 4.57 7.20

Tab.4

TPP value and second degree burn time of fabric"

试样
编号
无空气层 封闭式空气层 开放式空气层
TPP值/
(kW·s·m-2)
t2/s TPP值/
(kW·s·m-2)
t2/s TPP值/
(kW·s·m-2)
t2/s
N1 10.6 5.3 14.2 7.3 16.0 8.2
N2 11.3 5.8 17.2 8.8 19.9 10.2
N3 8.0 4.0 13.0 6.5 14.7 7.4
[1] SCOTT R A. Textiles for protection[M]. Cambridge: Woodhead Publishing, 2005: 31-59.
[2] NAYAK Rajkishore, HOUSHYAR Shadi, PADHYE Rajiv. Recent trends and future scope in the protection and comfort of fire-fighters'personal protective clo-thing[J]. Fire Science Reviews, 2014,3(1):4.
[3] TORVI D A, DALE J D. Heat transfer in thin fibrous materials under high heat flux[J]. Fire Technology, 1999,35(3):210-231.
[4] 翟丽娜, 李俊. 服装热防护性能测评技术的发展过程及现状[J]. 纺织学报, 2015,36(7):162-168.
ZHAI Li'na, LI Jun. Development and current status on performance test and evaluation of thermal protective clothing[J]. Journal of Textile Research, 2015,36(7):162-168.
[5] 陈思, 卢业虎. 空气层厚度对热防护面料蒸汽防护性能的影响[J]. 纺织学报, 2019,40(10):141-146.
CHEN Si, LU Yehu. Influence of air gap size on steam protective performance of fireproof fabric[J]. Journal of Textile Research, 2019,40(10):141-146.
[6] TALUKDAR Prabal, DAS Apurba, ALAGIRUSAMY Ramasamy. Numerical modeling of heat transfer and fluid motion in air gap between clothing and human body: effect of air gap orientation and body move-ment[J]. International Journal of Heat and Mass Transfer, 2017,108:271-291.
[7] SONG Guowen. Clothing air gap layers and thermal protective performance in single layer garment[J]. Journal of Industrial Textiles, 2007,36(3):193-205.
[8] TORVI David Andrew. Heat transfer in thin fibrous materials under high heat flux conditions[D]. Edmonton: University of Alberta, 1997: 50-67.
[9] GHAZY A, BERGSTROM D J. Numerical simulation of transient heat transfer in a protective clothing system during a flash fire exposure[J]. Numerical Heat Transfer Part A: Applications, 2010,58(9):702-724.
[10] SAWCYN Chris Michael John. Heat transfer model of horizontal air gaps in bench top testing of thermal protective fabrics[D]. Saskatoon: University of Saskatchewan, 2003: 46-64.
[11] GHAZY Ahmed, BERGSTROM Donald J. Numerical simulation of the influence of fabric's motion on protective clothing performance during flash fire exposure[J]. Heat and Mass Transfer, 2013,49(6):775-788.
[12] TIAN Miao, LI Jun. 3D heat transfer modeling and parametric study of a human body wearing thermal protective clothing exposed to flash fire[J]. Fire and Materials, 2018,42(6):657-667.
[13] 李小辉, 管曼好, 李俊. 防火服织物的服用热防护性能评价方法[J]. 纺织学报, 2015,36(8):110-115.
LI Xiaohui, GUAN Manhao, LI Jun. Evaluation on thermal protective performance of fabric for firefighter protective clothing[J]. Journal of Textile Research, 2015,36(8):110-115.
[14] 苏云, 杨杰, 李睿, 等. 热辐射暴露下消防员的生理反应及皮肤烧伤预测[J]. 纺织学报, 2019,40(2):147-152.
SU Yun, YANG Jie, LI Rui, et al. Predictions of physiological reaction and skin burn of firefighter exposing to thermal radiation[J]. Journal of Textile Research, 2019,40(2):147-152.
[15] 王莹. 多次闪火作用下织物及服装的热收缩与热防护性能研究[D]. 上海: 东华大学, 2016: 29-43.
WANG Ying. Research on thermal shrinkage and thermal protective performance of fabric and clothing after repeated flash fire exposure[D]. Shanghai: Donghua University, 2016: 29-43.
[1] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
[2] ZHAI Li'na, LI Jun, YANG Yunchu. Development and current state of thermal sensors used for testing thermal protective clothing [J]. Journal of Textile Research, 2020, 41(10): 188-196.
[3] HE Jiazhen, XUE Xiaoyu, WANG Min, LI Jun. Predicting thermal protective performance of clothing based on maximum attenuation factor model [J]. Journal of Textile Research, 2020, 41(06): 112-117.
[4] GAO Shan, LU Yehu, ZHANG Desuo, WU Lei, WANG Laili. Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(04): 117-122.
[5] QIU Hao, SU Yun, WANG Yunyi. Influence of steam exposure condition on thermal protective performance of fabrics [J]. Journal of Textile Research, 2020, 41(01): 118-123.
[6] HU Beibei, DU Feifei, LI Xiaohui. Hole structure optimization and evaluation of thermal barrier for firefighter protective clothing [J]. Journal of Textile Research, 2019, 40(11): 140-144.
[7] SU Yun, YANG Jie, LI Rui, SONG Guowen, LI Jun, ZHANG Xianghui. Predictions of physiological reaction and skin burn of firefighter exposing to thermal radiation [J]. Journal of Textile Research, 2019, 40(02): 147-152.
[8] . Prediction of skin injury degree based on modified model of heat transfer in three-layered thermal protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 111-118.
[9] . Research progress on air gap entrapped in firefighters' protective clothing and its measurement methods [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 151-156.
[10] . Influence of waterproof permeable layer on thermal and moisture protective performance of firefighter protective clothing in fire disaster [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 152-158.
[11] . Effects of light and moisture on performance of fabrics for firefighter protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(09): 82-88.
[12] . Evaluation of thermal protective performance of fabric for firefighter protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 110-115.
[13] . Devilopment and current status on performance test and evaluation of thermal protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(07): 162-168.
[14] . Application and feasibility analysis of phase change materials for fire-fighter suit [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(8): 124-0.
[15] ZHU Fanglong;WANG Xiujuan;ZHANG Qizhe;ZHANG Weiyuan. Numerical model of heat transfer in protective clothing for emergency rescue in fire fighting [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(04): 106-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!