Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (05): 185-192.doi: 10.13475/j.fzxb.20200503408

• Comprehensive Review • Previous Articles     Next Articles

Research progress of three-dimensional needle-punching technology

CHEN Xiaoming1,2,3, LI Chenyang2,3, LI Jiao1,2, XIE Junbo1,2, ZHANG Yifan1,2, CHEN Li1,2()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composite Materials, Ministry of Education, Tiangong University, Tianjin 300387, China
    3. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
  • Received:2020-05-18 Revised:2021-02-10 Online:2021-05-15 Published:2021-05-20
  • Contact: CHEN Li E-mail:chenli@tiangong.edu.cn

Abstract:

The three-dimensional (3-D) needle punching technology leads to low-cost formation of three-dimensional fabrics. In order to better understand the research status of 3-D needle punching technology, the latest domestic and foreign research progress of 3-D needle punching automation equipment technology, 3-D needle punching fabric (or preform) and 3-D needle punching composite materials are reviewed. This review concentrates mainly on the needle punching automatic forming equipment technology suitable for special-shaped fabrics, including the needle punching forming equipment for rotating preforms and free-form surface preforms. The existing needle technology and the new structures of three-dimensional needled fabrics, including multiple component hybrid needled fabrics, needled/stitched coupled needle-punched fabrics, contoured needld fabrics and gradient needled fabrics are summarized, and the experimental characterization, theoretical analysis and numerical simulation research progress of three-dimensional needled composites are also analyzed. Finally, the current development level and challenges of 3-D needle punching technology are discussed, and the future development trend of 3-D needle punching technology is prospected.

Key words: three-dimensional needle punching equipment, needle punching, three-dimensional needle punched fabric, three-dimensional needle punched composite, needle punching technology

CLC Number: 

  • TB33

Fig.1

Special needle punching equipment for rotary preform. (a) Variable diameter rotary needle punching machine; (b) Cylindrical rotary body needle punching machine"

Fig.2

Flexible needle punching equipment for rotary preform"

Fig.3

Needle punching robot for free-form surfaces preform"

Fig.4

3D printer for needle-punched fabric"

Fig.5

Cross section of Groz-Beckert needles"

Fig.6

New three-dimensional needle punching needles. (a) Positive barb needle; (b) Movable barb needle; (c) Two-way barb needle; (d) Elliptical cross section needle"

Fig.7

Multi-component hybrid needle punched fabric"

Fig.8

Contoured needle-punched fabric"

Fig.9

Gradient needle punched fabric. (a) Density adjustable needle punched fabric based on water-soluble fiber; (b) Gradient density needle punched fabric"

[1] CHEN X, CHEN L, ZHANG C, et al. Three-dimensional needle-punching for composites: a review[J]. Composites Part A: Applied Science and Manufacturing, 2016,85:12-30.
doi: 10.1016/j.compositesa.2016.03.004
[2] OLRY P. Process for manufacturing homogeneously needled three-dimensional structures of fibrous material: US4790052[P]. 1988-12-13.
[3] 房坤鹏, 刘延友, 乔志炜, 等. 一种变直径回转体织物针刺成型设备:201710200976.7[P]. 2017-03-30.
FANG Kunpeng, LIU Yanyou, QIAO Zhiwei, et al. Variable diameter rotary fabric needle forming device: CN201710200976.7[P]. 2017-03-30.
[4] HERVE E, LE H, GARETH C, et al. Installation and a method for needling a fiber preform while controlling the contact pressure of the stripper: US20180274144A1[P]. 2018-9-27.
[5] 杨建成, 李笑, 杨建伟. 一种异形截面非织造布立体织物针刺: 201821859010.0[P]. 2019-07-09.
YANG Jiancheng, LI Xiao, YANG Jianwei. Needle punching of non-woven fabric with irregular cross-section: 201821859010.0[P]. 2019-07-09.
[6] 蒋洪亮. 一种应用于碳纤维坩埚制备的针刺机: 201921069385.1[P]. 2020-06-02.
JIANG Hongliang. A needling machine applied to the preparation of carbon fiber crucibles: 201921069385.1 [P]. 2020-06-02.
[7] 范臻, 孟健. 一种导弹壳体专用针刺机: 201821810987.3[P]. 2019-08-13.
FANG Zhen, MENG Jian. A special needling machine: 201821810987.3[P]. 2019-08-13.
[8] 陈小明, 李皎, 张一帆, 等. 回转结构预制体柔性针刺成型系统设计[J]. 纺织学报, 2020,41(11):156-161.
CHEN Xiaoming, LI Jiao, ZHANG Yifan, et al. Design of flexible needle punching system for rotary Preform[J]. Journal of Textile Research, 2020,41(11):156-161.
[9] 陈小明, 陈利, 李皎, 等. 一种双头对称回转预制体柔性针刺成形装备: 201920237620.5[P]. 2020-06-09.
CHEN Xiaoming, CHEN Li, LI Jiao, et al. A double-head symmetrical rotary prefabricated flexible needle punching: 201920237620.5 [P]. 2020-06-09.
[10] 陈小明, 陈利, 李皎, 等. 一种面向无芯模支撑的回转预制体针刺成形辅助支撑装置: 201920237262.8[P]. 2020-06-09.
CHEN Xiaoming, CHEN Li, LI Jiao, et al. Auxiliary supporting device for needle punching of rotary preform facing coreless mold support: 201920237262.8[P]. 2020-06-09.
[11] 陈小明. 异型构件预制体机器人三维针刺成形轨迹规划与针刺模拟[D]. 天津:天津工业大学, 2018: 19-45.
CHEN Xiaoming. 3D needle punching robot trajectory planning of special-shaped components and needle punching simulation[D]. Tianjin: Tiangong University, 2018: 19-45.
[12] 陈小明, 陈利, 谢军波, 等. 一种基于伺服针刺头单元的机器人针刺设备:201820208808.2[P]. 2018-11-06.
CHEN Xiaoming, CHEN Li, XIE Junbo, et al. A robotic needle-punching device based on a servo needle-punching head unit: 201820208808.2[P]. 2018-11-06.
[13] CHEN X, ZHANG Y, XIE J, et al. Robot needle-punching path planning for complex surface preforms[J]. Robotics & Computer Integrated Manufacturing, 2018,52:24-34.
[14] 陈小明, 陈利, 李皎, 等. 一种带力反馈的针刺机器人工作台: 201920237265.1[P]. 2020-06-09.
CHEN Xiaoming, CHEN Li, LI Jiao, et al. A needle punching robot workbench with force feedback: 201920237265.1[P]. 2020-06-09.
[15] 陈利, 陈小明, 张春燕, 等. 一种手提气动针刺枪: 201620357508.1[P]. 2016-10-19.
CHEN Li, CHEN Xiaoming, ZHANG Chunyan, et al. A portable pneumatic needling gun: 201620357508.1[P]. 2016-10-19.
[16] SCOTT H, PITTSBURGH P A. Systems and methods for additive manufacturing of three dimensional objects using needle felting: US10160164B2[P]. 2018-12-25.
[17] 董九志, 宋宗建, 陈云军, 等. 预制体缝合针稳定性分析及插刺机构改进设计[J]. 纺织学报, 2019,40(10):171-176.
DONG Jiuzhi, SONG Zongjian, CHEN Yunjun, et al. Stability analysis of suture needle of prefabricated parts and improvement of inserting mechanism[J]. Journal of Textile Research, 2019,40(10):171-176.
[18] 马月双, 靳向煜, 吴海波. 一种针刺机正刺刺针: 201220098694.3[P]. 2012-11-07.
MA Yueshuang, JIN Xiangyu, WU Haibo. A needle punching machine needle: 201220098694.3[P]. 2012-11-07.
[19] 陈维, 李泽华. 针刺机用刺针: 201821278900.2[P]. 2019-04-02.
CHEN Wei, LI Zehua. Needle for needle punching: 201821278900.2[P]. 2019-04-02.
[20] 周建国, 吉宏伟, 李维栋. 一种针刺机的刺针: 201320777106.3[P]. 2014-05-21.
ZHOU Jianguo, JI Hongwei, LI Weidong. Needle of a needle punching machine: 201320777106.3[P]. 2014-05-21.
[21] 卢亚芹. 一种高效的起绒针刺机的刺针结构: 201720293203.3[P]. 2017-11-03.
LU Yaqin. Needle structure of a high-efficiency pile needle: 201720293203.3[P]. 2017-11-03.
[22] 吴海波, 郭卫昂. 一种椭圆形截面非织造用刺针的试作及应用[J]. 纺织器材, 2015(5):7-10.
WU Haibo, GUO Weiang. Trial production and application of a needle with oval cross-section[J]. Textile Accessories, 2015 (5):7-10.
[23] 缪云良. 碳纤维复合金属材料针刺预制体: 201721270815.7[P]. 2018-05-22.
MIAO Yunliang. Carbon fiber composite metal material needle punched preform: 201721270815.7[P]. 2018-05-22.
[24] 缪云良. 仿形立体织物: 201920092607.5[P]. 2020-01-21.
MIAO Yunliang. Shaped three-dimensional fabric: 201920092607.5[P]. 2020-01-21.
[25] 刘延友, 程海霞, 乔志炜. 一种密度可调可控的针刺预制体及其制备方法:201811272773.X[P]. 2020-05-29.
LIU Yanyou, CHENG Haixia, QIAO Zhiwei. Density adjustable and controllable acupuncture preform and its preparation method: 201811272773.X[P]. 2020 -05-29.
[26] 尹锋, 吴桑. 一种由不同密度层构成的针刺预制体及其制备方法:201910542487.9[P]. 2019-09-20.
YIN Feng, WU Sang. A needle punched preform of different densities and its preparation method: 201910542487.9[P]. 2019-09-20.
[27] 李典森, 姚倩倩, 姜楠, 等. 室温和高温下三维针刺炭/炭复合材料的弯曲性能及破坏机制[J]. 新型炭材料, 2016(4):437-444.
LI Diansen, YAO Qianqian, JIANG Nang, et al. Bending properties and failure mechanism of three-dimensional needle-punched carbon/carbon composites at room temperature and high temperature[J]. New Carbon Materials, 2016 ( 4):437-444
[28] 张波, 贺平照, 梁建伟, 等. 针刺C/C复合材料高温剪切强度研究[J]. 材料导报, 2018,32(S2):270-285.
ZHANG Bo, HE Pingzhao, LIAN Jianwei, et al. Research on high-temperature shear strength of seedle-punched C/C composites[J]. Materials Reports, 2018,32(S2):270-285.
[29] 郑伟, 林志远, 刘芹, 等. 针刺C/C复合材料高温力学性能[J]. 宇航材料工艺, 2017,47(6):47-49.
ZHENG Wei, LIN Zhiyuan, LIU Qin, et al. High temperature mechanical properties of acupuncture C/C composites[J]. Aerospace Materials & Technology, 2017,47(6):47-49.
[30] XIE W, YANG F, MENG S, et al. Perforation of needle-punched carbon-carbon composites during high temperature and high-velocity ballistic impacts[J]. Composite Structures, 2020,245:1-10.
[31] WAN F, LIU R, WANG Y, et al. In situ observation of compression damage in a 3D needled-punched carbon fiber-silicon carbide ceramic matrix composite[J]. Composite Structures, 2019,210:189-201.
doi: 10.1016/j.compstruct.2018.11.041
[32] XIE J, FANG G, CHEN Z, et al. An anisotropic elastoplastic damage constitutive model for 3D needled C/C-SiC composites[J]. Composite Structures, 2017,176:164-177.
doi: 10.1016/j.compstruct.2017.04.043
[33] JIA Y, LIAO D, CUI H, et al. Modelling the needling effect on the stress concentrations of laminated C/C composites[J]. Materials & Design, 2016,104:19-26.
[34] QI Y, FANG G, WANG Z, et al. An improved analytical method for calculating .pngfness of 3D needled composites with different needle-punched processes[J]. Composite Structures, 2020,237:1-11.
[35] YU J, ZHOU C, ZHANG H. A micro-image based reconstructed finite element model of needle-punched C/C composite[J]. Composites Science and Technology, 2017,153:48-61.
doi: 10.1016/j.compscitech.2017.09.029
[36] MENG S, SONG L, XU C, et al. Predicting the effective properties of 3D needled carbon/carbon composites by a hierarchical scheme with a fiber-based representative unit cell[J]. Composite Structures, 2017,172:198-209.
doi: 10.1016/j.compstruct.2017.03.090
[37] HAN M, ZHOU C, ZHANG H. A mesoscale beam-spring combined mechanical model of needle-punched carbon/carbon composite[J]. Composites Science & Technology, 2018,168(10):371-380.
[38] HAN M, ZHOU C, SILBERSCHMIDT V. Mesoscale damage analysis of needle-punched carbon/carbon composite considering randomness of inherent defects[J]. Composites Science and Technology, 2019,183:1-12.
[39] XIE J, CHEN X, ZHANG Y, et al. Experimental and numerical investigation of the needling process for quartz fibers[J]. Composites Science and Technology, 2018,165:115-123.
doi: 10.1016/j.compscitech.2018.06.009
[40] JIA D, DUAN H, ZHAN S, et al. Design and development of lubricating material database and research on performance prediction method of machine learning[J]. Scie.pngic Reports, 2019,9(1):1-11.
[1] YANG Xin, SHAO Huiqi, JIANG Jinhua, CHEN Nanliang. Meso-structure simulation of hexagonal braiding preforms [J]. Journal of Textile Research, 2021, 42(04): 85-92.
[2] LU Zhenqian, YANG Yaru, XUN Yong. Research review of fiber effect on properties of cement-based composite [J]. Journal of Textile Research, 2021, 42(04): 177-183.
[3] LIU Shuqiang, JING Yifan, YANG Yaru, WU Gaihong, YU Juanjuan, WANG Kaiwen, LI Huimin, LI Fu, ZHANG Man. Preparation of self-healing double-layer microcapsules and its application for basalt fabrics [J]. Journal of Textile Research, 2021, 42(04): 127-131.
[4] ZHANG Runke, LÜ Wangyang, CHEN Wenxing. Preparation and electrochemical properties of carbon fiber fabric sensors co-modified by cobalt phthalocyanine and carbon nanotubes [J]. Journal of Textile Research, 2021, 42(04): 121-126.
[5] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and piezoelectric properties of carbon nanotubes/polyvinylidene fluoride nanofiber membrane [J]. Journal of Textile Research, 2021, 42(03): 44-49.
[6] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[7] CHEN Jieru, QIU Shiyuan, YANG Qingqing, ZHOU Yi. Research on inter-yarn friction of aramid fabric based on adjustable tension device [J]. Journal of Textile Research, 2021, 42(01): 67-72.
[8] LÜ Qingtao, ZHAO Shibo, DU Peijian, CHEN Li. Research status of fatigue properties characterization and analysis methods of resin matrix composites [J]. Journal of Textile Research, 2021, 42(01): 181-189.
[9] YANG Tiantian, WANG Ling, QIU Haipeng, WANG Xiaomeng, ZHANG Diantang, QIAN Kun. Bending property and damage mechanism of three-dimensional woven angle interlock SiCf/SiC composites [J]. Journal of Textile Research, 2020, 41(12): 73-80.
[10] LIN Chen, CHENG Ling. Research progress of stitched composites and their marine applications [J]. Journal of Textile Research, 2020, 41(12): 166-173.
[11] ZHANG Yike, JIA Fan, GUI Cheng, JIN Rui, LI Rong. Preparation and performance of flexible sensor made from polyvinylidene fluoride/FeCl3 composite fibrous membranes [J]. Journal of Textile Research, 2020, 41(12): 13-20.
[12] CHEN Xiaoming, LI Jiao, ZHANG Yifan, XIE Junbo, LI Chenyang, CHEN Li. Design of flexible needle-punching forming system for rotary structure preform [J]. Journal of Textile Research, 2020, 41(11): 156-161.
[13] ZHOU Yi, LI Hang, YAN Xiangbang, LIANG Yaoting, ZHANG Zhongwei. Influence of layer spacing on ballistic performance of double-plied plain fabric target [J]. Journal of Textile Research, 2020, 41(11): 59-65.
[14] WANG Zexing, WU Bo, LI Shuai, HE Bin. Energy dissipation evolution of jute fabric/polyethylene composite under cyclic stress relaxation [J]. Journal of Textile Research, 2020, 41(10): 74-80.
[15] FENG Duanpei, SHANG Yuanyuan, LI Jun. Multi-scale simulation of impact failure behavior for 4- and 5-directional 3-D braided composites [J]. Journal of Textile Research, 2020, 41(10): 67-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!