Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (10): 92-98.doi: 10.13475/j.fzxb.20201101207

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Method to detect virulence gene rfbE of Escherichia coli O157:H7 in textiles

LI Ke1, ZHANG Zihong1, YU Jianying1, LIAN Sumei2, DING Youchao3, XIE Tangtang4, FU Kejie5, GUO Huiqing1()   

  1. 1. Zhengzhou Customs, Zhengzhou, Henan 450003, China
    2. Shijiazhuang Customs, Shijiazhuang, Hebei 050051, China
    3. Nanjing Customs Industrial Products Testing Center, Nanjing, Jiangsu 210001, China
    4. Shenzhen Customs Industrial Products Testing Technology Center, Shenzhen, Guangdong 518067, China
    5. Ningbo Institute of Inspection Science and Technology, Ningbo, Zhejiang 315000, China
  • Received:2020-11-26 Revised:2021-07-19 Online:2021-10-15 Published:2021-10-29
  • Contact: GUO Huiqing E-mail:guohq65@aliyun.com

Abstract:

In order to establish a sensitive, specific, rapid and efficient method to evaluate E. coli O157:H7 in textiles, the conservative rfb E sequence of E. coli O157:H7 was screened for the design of PCR specific primers and fluorescent double labeled probes. Combined with immunomagnetic beads technology, a new technology was developed for quick and efficient isolation of E. coli O157:H7 under the condition of low concentration and non-culturable target bacteria. A real-time fluorescent quantitative PCR method was developed, and the detection limit could reach 8 CFU/g. 30 positive samples were identified using this method, and the results were 100% consistent with the results from using the traditional methods. The results show that the new method is stable, rapid and sensitive in identifying E. coli O157:H7 in textiles.

Key words: textile, Escherichia coli O157:H7, virulence gene, immunomagnetic bead, real-time PCR

CLC Number: 

  • TSO7

Tab.1

Parameter of two sets of primers"

引物名 引物序列5’-3’ 扩增长度 Genebank编号 引物所在位置
1-rfbE-F TTCCTCTCTTTCCTCTGCGG 197 CP035366.1 2724342-2724361
1-rfbE-R TGACAAATATCTGCGCTGCT 2724538-2724519
1-rfbE-P FAM-TCAGCTTGTTCTAACTGGGCT- TAMRA 2707901-2707921
2-rfbE-F CTCATTCGATAGGCTGGGGA 181 CP035366.1 2724180-2724199
2-rfbE-R CGCAGAGGAAAGAGAGGAAT 2724360-2724341
2-rfbE-P FAM-CCGAGTACATTGGCATCGTG-TAMRA 2707674-2707693

Tab.2

Corresponding amount of primers and probes at each final concentration in system"

序号 引物、探针终浓度/
(μmol·L-1)
体系中引物、探针
加入量/μL
0.2 0.5
0.4 1.0
0.6 1.5
0.8 2.0
1.0 2.5

Fig.1

Amplification curve of two sets of primers"

Fig.2

Amplification curve of primers and probes at different final concentrations 1—0.2 μmol/L; 2—0.4 μmol/L; 3—0.6 μmol/L;4—0.8 μmol/L; 5—1.0 μmol/L。"

Fig.3

Amplification results of different templates 1—1 μL; 2—2 μL; 3—3 μL; 4—4 μL; 5—5 μL。"

Fig.4

Amplification results at 60 ℃"

Fig.5

Specific amplification curve"

Tab.3

Test results of two methods"

编号 添加水平/
(CFU·mL-1)
传统方法 PCR方法
测试结果 概率/% 测试结果 概率/%
1 80(中) 1~10个平行实验全部阳性 1~10个平行实验全部阳性
2 1~10个平行实验全部阳性 1~10个平行实验全部阳性
3 10个平行有1个阴性 96 1~10个平行实验全部阳性 100
4 10个平行有1个阴性 1~10个平行实验全部阳性
5 1~10个平行实验全部阳性 1~10个平行实验全部阳性
6 8(低) 10个平行有1个阴性 10个平行有2个阴性
7 10个平行有2个阴性 10个平行有1个阴性
8 10个平行有3个阴性 76 1~10个平行实验全部阳性 100
9 10个平行有2个阴性 10个平行有2个阴性
10 10个平行有4个阴性 1~10个平行实验全部阳性
11 8×105(高) 1~10个平行实验全部阳性 100 1~10个平行实验全部阳性 100
12 未添加 阴性 0 阴性 0

Fig.6

Amplification curves of 7 dilutions"

Fig.7

Amplification curve of some positive samples added with target bacteria"

Tab.4

Parallel test of 20 samples of 5 samples"


添加
水平/
(CFU/mL)
传统方法 PCR方法
测试结果 概率
/%
测试结果 概率
/%
1 80 20个平行全部阳性 20个平行全部阳性
2 20个平行全部阳性 20个平行全部阳性
3 20个平行全部阳性 100 20个平行全部阳性 100
4 20个平行全部阳性 20个平行全部阳性
5 20个平行全部阳性 20个平行全部阳性
12 未添加 阴性 阴性

Fig.8

Amplification results of natural pollution sample"

[1] 中华人民共和国农业部公告第1149号,人畜共患传染病名录[EB].[2009-02-20]. http://www.moa.gov.cn/nybgb/2009/derq/201806/t20180606_6151208.htm .
Announcement No. 1149 of Ministry of agriculture of the people's Republic of China, list of zoonotic infectious diseases[EB].[2009-02-20]. http://www.moa.gov.cn/nybgb/2009/derq/201806/t20180606_6151208.htm .
[2] LEE Jae-Ik, KIM Sang-Soon, KANG Dong-Hyun. Susceptibility of Escherichia coli O157:H7 grown at low temperatures to the krypton-chlorine excilamp[J]. Sci Rep, 2019, 9(1):563.
doi: 10.1038/s41598-018-37060-1 pmid: 30679621
[3] YANG G, WANG H, DONGY, et al. High-throughput photoelectrochemical determination of E. coli O157:H7 by modulation of the anodic photoelectrochemistry of CdS quantum dots via reversible deposition of MnO2[J]. Mikrochim Acta, 2019, 187(1):20142-20147.
[4] LI B, LIU H, WANG W. Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E.coli[J]. BMC Microbial, 2017, 17(1):215.
[5] PANG B, ZHAO C, LI L, et al. Development of a low-cost paper-based ELSIA method for rapid Escherichia coli O157:H7 detection[J]. Analytical Biochemistry, 2017, 542(20):58-62.
doi: 10.1016/j.ab.2017.11.010
[6] AL-NABULSI ANAS A, OLAIMAT AMIN N, OSAILI TAREQ M, et al. Behavior of Escherichia coli O157:H7 and Listeria monocytogenes during fermentation and storage of camel yogurt[J]. Journal of Dairy Science, 2016, 99(3):1802-1811.
doi: 10.3168/jds.2015-9872
[7] 刘起勇. 新时代媒介生物传染病形势及防控对策[J]. 中国媒介生物学及控制杂志, 2019, 30(1):1-6.
LIU Qiyong. Epidemic profile of vector-borne diseases and vector controlstrategies in the new era[J]. Chin J Vector Biol& Control, 2019, 30(1):1-6.
[8] Global vector control response 2017-2030[R]. Geneva:WHO, 2017.
[9] 严佳, 李刚. 医用纺织品的研究进展[J]. 纺织学报, 2020, 41(9):191-200.
YAN Jia, LI Gang. Research progress on medical textiles[J]. Journal of Textile Research, 2020, 41(9):191-200.
[10] O'TOOLE G, KAPLAN H B, KOLTER R. Biofilm formation as microbial development[J]. Annual Review of Microbiology, 2000, 54(1):49-79.
doi: 10.1146/micro.2000.54.issue-1
[11] GALIE S, GARCIA-GUTIERREZ C, MIGUELEZ E M, et al. Biofilmsin the food industry: health aspects and control methods[J]. Frontiersin Microbiology, 2018, 9:898.
[12] YU Longfu, YANG Yangjia, JIA Huifan, et al. Induction of Escherichia coli O157 : H7 into a viable but non-culturable state by high temperature and its resusci-tation[J]. Microorganisms 2019, 7(12), 634.
doi: 10.3390/microorganisms7120634
[13] MAIFRENI M, FRIGO F, BARTOLOMEOLI I, et al. Bacterial biofilm as a possible source of contamination in the microbreweryenvironment[J]. Food Control, 2015, 50:809-814.
doi: 10.1016/j.foodcont.2014.10.032
[14] MILANOV D, LJUBOJEVIC D, CABARKAPA I, et al. Biofilm as risk factor for salmonella contamination in various stages of poultry production[J]. European Poultry Science, 2017, 81(1):1-14.
[15] 高涛, 张克俭, 张丽萍, 等. 免疫磁珠富集-实时荧光 PCR检测生畜肉中大肠埃希菌 O157:H7 的实验研究[J]. 医学动物防制, 2016, 32(11):1184-1186.
GAO Tao, ZHANG Kejian, ZHANG Liping, et al. Immune magnetic beads enrichment-real-time fluorescent PCR detection of meat in Ecoli O157:H7 experimental research[J]. Medical Animal Control, 2016, 32(11):1184-1186.
[16] 郝良玉, 曲晗, 李志萍, 等. 适配体捕获磁珠富集大肠埃希菌O157:H7方法的建立[J]. 中国病原生物学杂志, 2020, 15(4):387-391.
HAO Liangyu, QU Han, LI Zhiping, et al. Enrichment of E. coli O157:H7 using aptamer capture magnetic beads[J]. Chinese Journal of Pathogenic Biology, 2020, 15(4):387-391.
[17] 赵亚男, 曾德新, 郭德华, 等. 一种快速鉴别牛肉中大肠杆菌O157:H7检测方法的建立及应用[J]. 中国人兽共患病学报, 2020, 36(4):272-279,296.
ZHAO Yanan, ZENG Dexin, GUO Dehua, et al. Establishment and application of a rapid detection method for Escherichia coli O157:H7 in beef[J]. Chinese Journal of Zoonoses, 2020, 36(4):272-279,296.
[18] 李轲, 郭会清, 王永杰, 等. 纺织品微生物检测标准综述[J]. 棉纺织技术, 2015, 43(9):81-84.
LI Ke, GUO Huiqing, WANG Yongjie, et al. Summary of textites microorfanism test standerd[J]. Cotton Textile Technology, 2015, 43(9):81-84.
[19] 李轲, 郭华麟, 禹建鹰, 等. 3种病原菌多重IMS-荧光RPA检测体系的建立及初步应用[J]. 畜牧与兽医, 2019, 51(3):106-112.
LI Ke, GUO Hualin, YU Jianying, et al. Establishment and preliminary application of multiple IMS real-time-RPA detection system for three pathogenic bacteria[J]. Animal Husbandry & Veterinary Medicine, 2019, 51(3):106-112.
[20] 汪艺, 冯俊丽, 戴志远, 等. 实时荧光定量聚合酶链式反应快速鉴定三种鳕鱼[J]. 核农学报, 2020, 34(10):2190-2198.
WANG Yi, FENG Junli, DAI Zhiyuan, et al. Rapid identification of three species of COD by real-time fluorescent quantitative polymerase chain reaction[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(10):2190-2198.
[1] PAN Mengjiao, LU Yehu, WANG Min. Prediction of thermal comfort for bedding system based on four-node thermoregulation model [J]. Journal of Textile Research, 2021, 42(09): 150-155.
[2] YANG Qun, LIANG Qi, WANG Liming, DAI Zhengwei. Thermo-sensitive hydrophilic-hydrophobic transition and moisture permeability of poly-N-isopropylacrylamide/polyurethane gradient composite membrane [J]. Journal of Textile Research, 2021, 42(09): 17-23.
[3] ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, GAO Chong, CHEN Fengxiang, XU Weilin. Research progress of antibacterial materials for textiles and their applications [J]. Journal of Textile Research, 2021, 42(09): 170-179.
[4] FANG Jian, REN Song, ZHANG Chuanxiong, CHEN Qian, XIA Guangbo, GE Can. Electroactive fibrous materials for intelligent wearable textiles [J]. Journal of Textile Research, 2021, 42(09): 1-9.
[5] YANG Lu, XUE Tao, MENG Jiaguang, YANG Doudou. Anion functional finish and properties of 3D printed flexible garment fabrics [J]. Journal of Textile Research, 2021, 42(08): 102-108.
[6] TAN Jiangtao, JIANG Gaoming, GAO Zhe, ZHENG Peixiao. Research progress of textile composite helmet shell against low-velocity impact [J]. Journal of Textile Research, 2021, 42(08): 185-193.
[7] ZHANG Yaopeng, SHEN Chensi, XU Chenye, LI Fang. Review on treatment technology for typical pollutants in textile industry [J]. Journal of Textile Research, 2021, 42(08): 24-33.
[8] WANG Shaopeng, WU Baozhai, HE Zhou. Technology progress in recycling and reuse of waste textiles [J]. Journal of Textile Research, 2021, 42(08): 34-40.
[9] LU Jun, WANG Fujun, LAO Jihong, WANG Lu, LIN Jing. Finite element analysis of braided artificial ligaments of different structures under combined loading [J]. Journal of Textile Research, 2021, 42(08): 84-89.
[10] WANG Fenping, LI Jiawei, HUANG Huajun, WU Jindan, FU Shaohai, QI Dongming, ZHAO Lei, HE Guiping. Research progress of organic pigment modification technology for textiles coloration [J]. Journal of Textile Research, 2021, 42(07): 192-200.
[11] LIN Wenjun, MIAO Xuhong. Application research progress of optical fiber in luminescent fabrics [J]. Journal of Textile Research, 2021, 42(07): 169-174.
[12] ZHANG Chao, JIANG Zhiming, ZHU Shaotong, ZHANG Chenxi, ZHU Ping. Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics [J]. Journal of Textile Research, 2021, 42(07): 39-45.
[13] ZHANG Jiaojiao, LI Yuyang, LIU Yun, DONG Chaohong, ZHU Ping. Flame retardant and antibacterial treatments for cotton-viscose blended fabrics [J]. Journal of Textile Research, 2021, 42(07): 31-38.
[14] XU Jin, YANG Pengcheng, XIAO Yuan, XU Guangshen. Visual measurement of key geometric parameters of droplet in circuit jet printing on fabric surface [J]. Journal of Textile Research, 2021, 42(07): 137-143.
[15] HAN Qiyang, WU Xiongying, DING Xuemei. Research progress on fibrous microplastic released from synthetic textiles during domestic laundry [J]. Journal of Textile Research, 2021, 42(06): 35-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!