Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (10): 99-106.doi: 10.13475/j.fzxb.20201004308

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Degradation kinetics and mechanism of Direct Blue 15 in photoactivated potassium persulfate system

HU Qian, YANG Hai(), LI Xin, CHEN Pinting, CHEN Zhen, YI Bing   

  1. Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
  • Received:2020-10-21 Revised:2021-07-12 Online:2021-10-15 Published:2021-10-29
  • Contact: YANG Hai E-mail:yanghai1001@163.com

Abstract:

In order to explore the degradation feasibility of bisazo dye Direct Blue 15 (DB15) and its transformation mechanism under attack of reactive oxygen species (ROSs), the degradation kinetics and mechanism of DB15 was studied in UV/K2S2O8 system. The results show that the degradation of the bisazo dye DB15 in the UV/K2S2O8 system conforms to pseudo-first-order kinetics, with a kinetic constant rate of 0.010 7 min-1. Different K2S2O8 concentration, initial substrate concentration and reaction temperature have significant effects on its degradation kinetics. Finally, the degradation intermediates of DB15 were identified by gas chromatography-mass spectrometry. Combined with the frontier electron densities (FEDs) of DB15, the positions of N11, N24, N41, N42, and C28 are likely to be attacked or occurred the single electron transfer under the attack of $SO_4^-$·, ·OH and so on, which resulted in the cleavage of N=N and C—N bonds and further hydroxylation and mineralization of the degradation intermediates under the attack of the ROSs.

Key words: Direct Blue 15, photo-activated, degradation kinetics, mechanism, reactive oxygen specie

CLC Number: 

  • X131

Fig.1

Light source and reaction device"

Fig.2

Degradation of DB15 in different systems (a) and relationship between -ln(c/c0) and time(b)"

Fig.3

Degradation curves of DB15 under different K2S2O8 dosage (a) and effect of K2S2O8 dosage on degradation kinetics of DB15(b)"

Fig.4

Degradation curves of DB15 under different substrate concentration (a) and effect of substrate concentration on degradation kinetics of DB15(b)"

Fig.5

Degradation curves of DB15 under different reaction temperature (a) and effect of different reaction temperature on degradation kinetics of DB15(b)"

Fig.6

EPR spectrum of free radicals in UV/K2S2O8 system"

Fig.7

TIC chromatogram of degradation intermediates for DB15 extracted with EA (a) and DCM (b)"

Tab.1

Plausible degradation intermediates of DB15 in UV/K2S2O8 system"

降解产物
编号
质荷比
m/z
保留时间/
min
质谱主要碎片的质
荷比m/z
可能的降解产物
名称
谱库相似
度/%
萃取剂
P1 111 9.3 55,83,84 对苯二酚 81 EA
P2 192 18.6 152,165,179 多羟基取代产物 80 EA
P3 219 22.1 97,165 联苯四醇 83 EA
P4 139 23.6 57,97 4-氨基-3-甲氧基苯酚 87 EA
P5 155 24.9 83,141 4-硝基苯-1,3-二醇 85 EA
P6 331 25.4 207,279,281 N N键断裂产物 86 EA
P7 126 27.8 59,83 1,2,4-苯三醇 88 EA
P8 112 5.4 71,84,99 邻二苯酚 90 DCM
P9 191 13.3 115,163,173 7-氨基萘-1,3,5-三醇 87 DCM
P10 223 17.4 83,111,149 7-硝基萘-1,3,5-三醇 93 DCM
P11 125 23.6 57,71,111 4-氨基苯-1,3-二醇 80 DCM

Tab.2

DB15 frontier electron densities (FEDs) calculation results"

原子序号 2 FE D HOMO 2 2 FED LUMO 2 FED HOMO 2+ FE D LUMO 2 原子序号 2 FE D HOMO 2 2 FE D LUMO 2 FE D HOMO 2+ FE D LUMO 2
C1 0.128 6 0.046 9 0.087 8 C32 0.002 3 0.007 8 0.005 1
C2 0.076 2 0.031 0 0.053 6 C33 0.023 1 0.040 0 0.031 6
C3 0.014 9 0.059 6 0.037 3 C34 0.016 2 0.028 3 0.022 2
C4 0.000 8 0.119 7 0.060 2 C35 0.004 5 0.018 6 0.011 5
C5 0.152 5 0.000 3 0.076 4 C36 0.032 9 0.048 2 0.040 6
C6 0.037 1 0.103 7 0.070 4 C37 0.006 5 0.020 9 0.013 7
C7 0.082 2 0.105 3 0.093 7 C38 0.012 7 0.025 3 0.019 0
C8 0.165 0 0.075 4 0.120 2 O39 0.001 4 0.002 5 0.001 9
C9 0.015 9 0.102 5 0.059 2 C40 0.000 5 0.004 6 0.002 6
C10 0.105 3 0.001 8 0.053 5 N41 0.006 4 0.036 5 0.121 4
N11 0.035 7 0.210 2 0.123 0 N42 0.015 0 0.045 3 0.130 2
O12 0.051 5 0.024 3 0.037 9 C43 0.010 3 0.025 2 0.017 7
N13 0.148 5 0.012 2 0.080 4 C44 0.000 6 0.024 1 0.012 4
S14 0.000 3 0.002 7 0.001 5 C45 0.006 9 0.001 1 0.004 0
O15 0.001 1 0.005 8 0.003 5 C46 0.002 5 0.020 9 0.011 7
O16 0.001 4 0.004 9 0.003 1 C47 0.000 3 0.019 0 0.009 6
O17 0.001 3 0.001 5 0.001 4 C48 0.010 3 0.021 6 0.016 0
S19 0.000 3 0.004 2 0.002 2 C49 0.002 1 0.004 7 0.003 4
O20 0.001 4 0.001 7 0.001 5 C50 0.003 8 0.026 4 0.015 1
O21 0.002 5 0.007 4 0.004 9 C51 0.001 6 0.004 0 0.002 8
O22 0.000 8 0.004 4 0.002 6 C52 0.003 9 0.009 9 0.006 9
N24 0.071 9 0.247 2 0.159 6 O53 0.007 3 0.004 7 0.006 0
C25 0.058 0 0.080 8 0.069 4 N54 0.000 8 0.000 6 0.000 7
C26 0.016 8 0.106 5 0.061 7 S55 0.000 0 0.000 8 0.000 4
C27 0.025 6 0.012 2 0.018 9 O56 0.000 0 0.000 5 0.000 2
C28 0.050 8 0.121 8 0.086 3 O57 0.000 0 0.000 7 0.000 4
C29 0.006 0 0.045 8 0.025 9 O58 0.000 1 0.000 2 0.000 1
C30 0.029 9 0.087 0 0.058 5 S60 0.000 0 0.001 2 0.000 6
C31 0.010 4 0.005 8 0.008 1 O61 0.000 2 0.001 8 0.001 0

Fig.8

Proposed degradation pathways of DB15 in UV/K2S2O8 system"

[1] KHANDEGAR V, SAROHA A K. Electrocoagulation for the treatment of textile industry effluent:a review[J]. Journal of Environmental Management, 2013, 128:949-963.
doi: 10.1016/j.jenvman.2013.06.043
[2] KURTANU, AMIR M, BAYKAL A, et al. Magnetically recyclable Fe3O4@His@Cuu nanocatalyst for degradation of Azo dyes[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(3):2548-2556.
doi: 10.1166/jnn.2016.11707
[3] LIU S H, FENG X J, GU F, et al. Sequential reduction/oxidation of azo dyes in a three-dimensional biofilm electrode reactor[J]. Chemosphere, 2017, 186:287-294.
doi: 10.1016/j.chemosphere.2017.08.001
[4] PILLAI I M, GUPTA A K, TIWARI M. Multivariate optimization for electrochemical oxidation of methyl orange: pathway identification and toxicity analysis[J]. Journal of Envirnmental Science & Health Part A: Toxic/Hazardous Substances & Environmental Engineering, 2014, 50(3):301-310.
[5] WANG X, CHENG X, SUN D, et al. Fate and transformation of naphthylaminesulfonic azo dye reactive black 5 during wastewater treatment process[J]. Environmental Science and Pollution Research International, 2014, 21(8):5713-5723.
doi: 10.1007/s11356-014-2502-y
[6] MENG X, LIU G, ZHOU J, et al. Effects of redox mediators on azo dye decolorization by shewanella algae under saline condi-tions[J]. Bioresour Technology, 2014, 151:63-68.
doi: 10.1016/j.biortech.2013.09.131
[7] 王晨曦, 万金泉, 马邕文, 等. 负载型颗粒活性炭催化过硫酸钠氧化降解橙黄G[J]. 环境工程学报, 2015, 9(1):213-218.
WANG Chenxi, WAN Jinquan, MA Yongwen, et al. Degradation of orange G catalyzed by Fe/GAC in the presence of persul-fate[J]. Chinese Journal of Environmental Engineering, 2015, 9(1):213-218.
[8] 陈家斌, 魏成耀, 房聪, 等. 碳纳米管活化过二硫酸盐降解偶氮染料酸性橙7[J]. 中国环境科学, 2016, 36(12):3618-3624.
CHEN Jiabin, WEI Chengyao, FANG Cong, et al. Decolorization of acid orange 7 by persulfate activated by carbon nanotube[J]. China Environmental Science, 2016, 36(12):3618-3624.
[9] 王森, 程赛鸽, 肖雪莉, 等. Fe2+活化过硫酸盐对市政污泥EPS性能的影响[J]. 环境工程学报, 2019, 13(9):2243-2249.
WANG Sen, CHENG Saige, XIAO Xueli, et al. Effect of Fe2+ activated persulfate on EPS properties of sewage sludge[J]. Chinese Journal of Environmental Engineering, 2019, 13(9):2243-2249.
[10] WANG Z Y, SHAO Y S, GAO N Y, et al. Degradation kinetic of dibutyl phthalate(DBP) by sulfate radical and hydroxyl radical-based advanced oxidation process in UV/persulfate system[J]. Separation and Purification Technology, 2018, 195:92-100.
doi: 10.1016/j.seppur.2017.11.072
[11] 徐鹏飞, 郭怡秦, 王光辉, 等. 紫外活化过硫酸盐对甲基橙脱色处理实验研究[J]. 环境工程, 2017, 35(11):58-61.
XU Pengfei, GUO Yiqin, WANG Guanghui, et al. Experimental study on UV-activated presulfate for decolorization of methyl or wastewater[J]. Environmental Engineering, 2017, 35(11):58-61.
[12] 范星, 唐玉朝, 姚顺顺. 紫外-活性炭协同活化过硫酸氢钾对罗丹明B的降解[J]. 环境化学, 2018, 37(12):2711-2720.
FAN Xing, TANG Yuchao, YAO Shunshun. Degradation of Rhodamine B by peroxymonosulfate synergistically activated by UV/activated carbon[J]. Environmental Chemistry, 2018, 37(12):2711-2720.
[13] ZHANG L L, DING W, QIU J T, et al. Modeling and optimization study on sulfumethoxazole degradation by electrochemically activated persulfate process[J]. Journal of Cleaner Production, 2018, 197:297-305.
doi: 10.1016/j.jclepro.2018.05.267
[14] 冯俊生, 姚海详, 蔡晨, 等. 微生物染料电池电活化过硫酸盐降解甲基橙偶氮染料[J]. 环境科学研究, 2019, 32(5):913-920.
FENG Junsheng, YAO Haixiang, CAI Chen, et al. Microbial fuel cell electro-activated persulfate to degrade methyl orange azo dye[J]. Research of Environmental Sciences, 2019, 32(5):913-920.
[15] ZHANG Y X, LIU H L, XIN Y J, et al. Erythromycin degradation and ERY-resistant gene inactivation in erythromycin mycelial dreg by heat-activated persulfate oxidation[J]. Chemical Engineering Journal, 2019, 358:1446-1453.
doi: 10.1016/j.cej.2018.10.157
[16] 朱淳, 徐江流, 申哲民, 等. 热活化过硫酸钠对偶氮染料的降解规律[J]. 净水技术, 2019, 38(7):108-114.
ZHU Chun, XU Jiangliu, SHEN Zhemin, et al. Degradation rule of azo dyes by thermally activated sodium persulfate[J]. Water Purification on Technology, 2019, 38(7):108-114.
[17] GAO F, LI Y J, XIANG B. Degradation of bisphenol a through transition metals activating persulfate process[J]. Ecotoxicology and Environmental Safety, 2018, 15:239-247.
[18] 郭婧怡, 马扬帆, 杨绍贵, 等. 切割钢渣活化过硫酸盐降解偶氮类染料酸性红73[J]. 环境科学学报, 2019, 39(8):2550-2558.
GUO Jingyi, MA Yangfan, YANG Shaogui, et al. Degradation of acid red 73 by persulfate activated by steel slag[J]. Acta Scientiae Circumstantiae, 2019, 39(8):2550-2558.
[19] 杨珂, 唐琪, 杨晓丹, 等. 铁酸铜非均相活化过硫酸盐降解罗丹明B[J]. 中国环境科学, 2019, 39(9):3761-3769.
YANG Ke, TANG Qi, YANG Xiaodan, et al. Degradation of rhodamine B by heterogeneous activation of persulfate with copper ferrate[J]. China Environmental Science, 2019, 39(9):3761-3769.
[20] 唐玉朝, 尹汉雄, 黄健, 等. 零价铁活化过硫酸钠对偶氮染料4BS的脱色机理[J]. 环境化学, 2018, 37(5):1071-1078.
TANG Yuchao, YIN Hanxiong, HUANG Jian, et al. Decoloration mechanism of azo dye 4BS by zero valent iron activated sodium persulfate[J]. Environmental Chemistry, 2018, 37(5):1071-1078.
[21] 钟欣, 吴迪, 张凯欣, 等. 光助Fe/BiOCl活化过硫酸盐降解橙黄Ⅱ[J]. 环境化学, 2019, 38(12):2860-2868.
ZHONG Xin, WU Di, ZHANG Kaixin, et al. Photo-assisted activation of persulfate by using Fe/BiOCl for the degradation of azo dye Orange Ⅱ[J]. Environmental Chemistry, 2019, 38(12):2860-2868.
[22] SUN J H, SHI S H, LE Y F, et al. Fenton oxidative decolorization of the azo dye direct blue 15 in aqueous solution[J]. Chemical Engineering Journal, 2009, 15(3):680-683.
[23] 胡倩, 阳海, 陶文杰, 等. 酸性红37在UV/K2S2O8体系中降解动力学和转化机制[J]. 环境化学, 2019, 38(12):2869-2878.
HU Qian, YANG Hai, TAO Wenjie, et al. Degradation kinetic optimization and mechanistic investigation of acid red 37 in UV/K2S2O8 system[J]. Environmental Chemistry, 2019, 38(12):2869-2878.
[24] 易兵, 胡倩, 杨辉琼, 等. 酸性红(AR37)光催化降解动力学的响应曲面法优化及其转化机制[J]. 纺织学报, 2018, 39(6):81-88.
YI Bing, HU Qian, YANG Huiqiong, et al. Degradation kinetic optimization and mechanistic investigation of Monoazo Acid Red 37 in photocatalytic system[J]. Journal of Textile Research, 2018, 39(6):81-88.
[25] YANG H, ZHUANG S, HU Q, et al. Competitive reactions of hydroxyl and sulfate radicals with sulfonamides in Fe2+/S2O82- system: reaction kinetics, degradation mechanism and acute toxicity[J]. Chemical Engineering Journal, 2018, 339:32-41.
doi: 10.1016/j.cej.2018.01.106
[26] YANG H, ZHOU W C, YANG L P, et al. Flutriafol degradation in Ag +/S2O82- aqueous system: an experimental and theoretical investigation[J]. Environment Protection Engineering, 2018, 44(2):57-72.
[27] 庄帅, 阳海, 安继斌, 等. 硫酸根自由基对酸性红37的降解动力学与机制[J]. 纺织学报, 2019, 40(11):131-139.
ZHUANG Shuai, YANG Hai, AN Jibin, et al. Degradation kinetics and mechanism of Acid Red 37 under attack of sulfate radicals[J]. Journal of Textile Research, 2019, 40(11):131-139.
[28] YANG H, WEI H Q, HU L T, et al. Mechanism for the photocatalytic transformation of s-trizine herbicides by ·OH radicals over TiO2[J]. Chemical Engineering Journal, 2016, 300:209-216.
doi: 10.1016/j.cej.2016.04.099
[1] Jun Li. Research progress on heat transfer mechanism of firefighter protective clothing in low-level radiant heat exposures [J]. , 2021, 42(10): 0-0.
[2] ZHANG Wenhuan, LI Jun. Research progress in heat transfer mechanism of firefighter protective clothing under low-level radiant heat exposures [J]. Journal of Textile Research, 2021, 42(10): 190-198.
[3] HE Ju, LIU Xiaohui, SU Xiaowei, LIN Shenggen, REN Yuanlin. Preparation and properties of viscose fibers modified with star-shaped halogen-free flame retardants [J]. Journal of Textile Research, 2021, 42(10): 34-40.
[4] ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, GAO Chong, CHEN Fengxiang, XU Weilin. Research progress of antibacterial materials for textiles and their applications [J]. Journal of Textile Research, 2021, 42(09): 170-179.
[5] YU Zhicai, LIU Jinru, HE Hualing, MA Shengnan, JIANG Huiyu. Research and application progress in fire retardant fabric based on polymeric hydrogel [J]. Journal of Textile Research, 2021, 42(09): 180-186.
[6] XU Kai, TIAN Xing, CAO Ying, HE Yaqi, XIA Yanzhi, QUAN Fengyu. Preparation and property of flame retardant polyester/calcium alginate fiber composites [J]. Journal of Textile Research, 2021, 42(07): 19-24.
[7] ZHANG Siyu, YU Li, JIA He, LIU Xin. Free form deformation modeling method and inflation mechanism of folded canopy fabrics [J]. Journal of Textile Research, 2021, 42(07): 108-114.
[8] LI Jinjian, REN Jiazhi, LIANG Zhuo, JIA Guoxin. Dynamic analyses on nipper pendulum shaft in cotton combers [J]. Journal of Textile Research, 2021, 42(06): 160-165.
[9] SUN Chenying, WANG Wenqing, JIN Gaoling, WANG Rui. Research advances in thermoplastic polymers for flame retardant and anti-dripping behavior [J]. Journal of Textile Research, 2021, 42(06): 171-179.
[10] ZHANG Qianyu, QIN Zhigang, YAN Ruosi, JIA Lixia. Research progress on bulletproof properties of shear thickening fluid/high performance fiber composites [J]. Journal of Textile Research, 2021, 42(06): 180-188.
[11] YU Jinchao, JI Hong, CHEN Kang, GAN Yu. Properties of polyether-ester/polybutylene terephthalate composite fibers prepared by side by side bicomponent melt spinning [J]. Journal of Textile Research, 2021, 42(04): 42-47.
[12] LU Zhenqian, YANG Yaru, XUN Yong. Research review of fiber effect on properties of cement-based composite [J]. Journal of Textile Research, 2021, 42(04): 177-183.
[13] PAN Jiajun, XIA Zhaopeng, ZHANG Haibao, LU Yang, ZHAO Jilin, WANG Xuenong, WANG Liang, LIU Yong. Optimization and mechanism of hydrogen peroxide/ammonium persulfate bleaching for yak wool [J]. Journal of Textile Research, 2021, 42(04): 101-106.
[14] YANG Tingting, GAO Yuanbo, ZHENG Yi, WANG Xueli, HE Yong. Thermal degradation kinetics and pyrolysis products of bio-based polyamide 56 fiber [J]. Journal of Textile Research, 2021, 42(04): 1-7.
[15] ZHOU Yingyu, WANG Rui, JIN Gaoling, WANG Wenqing. Research progress of applications of photo-induced surface modification technique in flame retardant fabrics [J]. Journal of Textile Research, 2021, 42(03): 181-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!