Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (07): 19-24.doi: 10.13475/j.fzxb.20200902906

• Invited Column: New Flame Retardant Technology for Textile Materials • Previous Articles     Next Articles

Preparation and property of flame retardant polyester/calcium alginate fiber composites

XU Kai1,2, TIAN Xing1, CAO Ying2, HE Yaqi2, XIA Yanzhi1, QUAN Fengyu1,2()   

  1. 1. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong 266071, China
    2. College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2020-09-14 Revised:2021-03-01 Online:2021-07-15 Published:2021-07-22
  • Contact: QUAN Fengyu E-mail:quanfengyu@qdu.edu.cn

Abstract:

Facing the smoldering phenomenon of calcium alginate, the flame retardant composite was prepared by blending flame retardant polyester (FR-PET) and calcium alginate fiber (Ca-Alg) with a standard fiber dissociator. The flame-retardancy, thermal stability and morphology of the residue after conic calorimetry were characterized. The results show that when the mass ratio of FR-PET to Ca-Alg is 40∶60, the smoldering time of the composite is less than 1 s and the damage length is 12 mm. In the process of combustion, the melted FR-PET covers the surface of Ca-Alg fiber, which not only avoids the melting drop of FR-PET but also isolates the contact between Ca-Alg and air, thus inhibiting the smoldering of Ca-Alg. Furthermore, the composite has lower total heat release and total smoke production compared with FR-PET. In the third stage of mass loss of composites (350-600 ℃), the results of thermogravimetric analysis show that the intermediate products of thermal decomposition of Ca-Alg avoid the rapid decomposition of FR-PET, improves the stability of the composites and promotes the formation of residual carbon.

Key words: composite fiber, functional fiber, calcium alginate fiber, flame retardant polyester, smoldering, melting drop, flame retardant mechanism

CLC Number: 

  • TQ341.9

Tab.1

LOI values and vertical flammability test results of flame retardant polyester/calcium alginate fiber composites"

样品编号 LOI值/% 续燃时间/s 阴燃时间/s 损毁长度/mm
1# 24.5 0 完全损毁
2# 24.7 0 1 388 56
3# 25.1 0 240 8
4# 28.3 0 <1 12
5# 26.4 0 30 24
6# 30.8 3 0 39

Tab.2

Cone calorimetric test data of flame retardant polyester/calcium alginate fiber composites"

样品
编号
引燃
时间/s
热释放速率峰
值/(kW·m-2)
总热释放量/
(MJ·m-2)
烟释放速率峰
值/(m2·s-1)
总烟释放量/
(m2·m-2)
1# 58 136 7.12 0.007 0 0.05
4# 49 257 11.29 0.075 2 1.77
6# 68 316 12.66 0.203 1 5.62

Fig.1

Cone calorimetric curves of flame retardant polyester/calcium alginate fiber composites. (a)Heat release rate;(b) Total heat release;(c) Smoke release rate;(d) Total smoke production;(e) CO production;(f)CO2 production "

Fig.2

TG(a)and DTG(b)curves of flame retardant polyester/calcium alginate fiber composites"

Fig.3

SEM images of residues of flame retardant polyester/calcium alginate fiber composites after cone calorimetry"

[1] LIU Yun, ZHANG Chuanjie, ZHAO Jinchao, et al. Bio-based barium alginate film: preparation, flame retardancy and thermal degradation behavior[J]. Carbohydr Polym, 2016, 139:106-114.
doi: 10.1016/j.carbpol.2015.12.044
[2] ZHANG Jianjun, JI Quan, WANG Fengjun, et al. Effects of divalent metal ions on the flame retardancy and pyrolysis products of alginate fibres[J]. Polymer Degradation and Stability, 2012, 97(6):1034-1040.
doi: 10.1016/j.polymdegradstab.2012.03.004
[3] ZAMMARANO Mauro, MATKO Szabolcs, PITTS William, et al. Towards a reference polyurethane foam and bench scale test for assessing smoldering in upholstered furniture[J]. Polymer Degradation and Stability, 2014, 106:97-107.
doi: 10.1016/j.polymdegradstab.2013.12.010
[4] ZHANG Xiansheng, XIA Yanzhi, SHI Meiwu, et al. The flame retardancy of alginate/flame retardant viscose fibers investigated by vertical burning test and cone calorimeter[J]. Chinese Chemical Letters, 2018, 29(3):489-492.
doi: 10.1016/j.cclet.2017.07.023
[5] ZHAO Haibo, WANG Yuzhong. Design and synjournal of PET-based copolyesters with flame-retardant and antidripping performance[J]. Macromolecular Rapid Communications, 2017, 38(23):1700451.
doi: 10.1002/marc.v38.23
[6] WANG Yuzhong, CHEN Xiaoting, TANG Xudong, et al. A new approach for the simultaneous improvement of fire retardancy, tensile strength and melt dripping of poly(ethylene terephthalate)[J]. Journal of Materials Chemistry, 2003, 13(6):1248-1249.
doi: 10.1039/b302744a
[7] JING Xinke, GE Xinguo, XIANG Xing, et al. A novel phosphorus-containing copolyester with low melting temperature and high flame retardancy[J]. Polymer International, 2009, 58(10):1202-1208.
doi: 10.1002/pi.2655
[8] LEVCHIK S V, WEIL E D. A review on thermal decomposition and combustion of thermoplastic polyesters[J]. Polymers for Advanced Technologies, 2004, 15(12):691-700.
doi: 10.1002/(ISSN)1099-1581
[9] CHANG Shinnjen, CHANG Fengchin. Synjournal and characterization of copolyesters containing the phosphorus linking pendent groups[J]. Journal of Applied Polymer Science, 1999, 72:109-122.
doi: 10.1002/(ISSN)1097-4628
[10] SAKON Ichiro, SEKIGUCHI Masao, KANAYAMA Atsushi. Method for producing red phsophorus flame retardant and nonflammable resinous composition: US, 5041490[P]. 1991-08-20.
[11] SAKON Ichiro, SEKIGUCHI Masao, KANAYAMA Atsushi. Red phosphorus flame retardant and nonflammable resinous composition containing the same: US, 4879067[P]. 1989-11-07.
[12] BANKS Mavis, EBDON John, JOHNSON Michael. Influence of covalently bound phosphorus-containing groups on the flammability of poly(vinyl alcohol), poly(ethylene-co-vinyl alcohol) and low-density polyethylene[J]. Polymer, 1993, 34(21):4547-4556.
doi: 10.1016/0032-3861(93)90163-5
[13] BANKS Mavis, EBDON John, JOHNSON Michael. The flame-retardant effect of diethyl vinyl phosphonate in copolymers with styrene, methyl methacrylate, acrylonitrile and acrylamide[J]. Polymer, 1994, 35(16):3470-3473.
doi: 10.1016/0032-3861(94)90910-5
[14] MIKROYANNIDIS John A, KOURTIDES Demetrius A. Curing of epoxy resins with 1-[di(2-chloroethoxyphosphinyl)methyl]-2,4-and-2,6-diaminobenzene[J]. Journal of Applied Polymer Science, 1984, 29:197-209.
doi: 10.1002/app.1984.070290118
[15] WANG Bin, XU Yingjun, LI Ping, et al. Flame-retardant polyester/cotton blend with phosphorus/nitrogen/silicon containing nano-coating by layer-by-layer assembly[J]. Appl Surf Sci, 2020, 509:1-7.
[16] ZHANG Xiansheng, XIA Yanzhi, SHI Meiwu, et al. The flame retardancy of alginate/flame retardant viscose fibers investigated by vertical burning test and cone calorimeter[J]. Chin Chem Lett, 2018, 29(3):489-492.
doi: 10.1016/j.cclet.2017.07.023
[17] WANG Bin, LI Ping, XU Yingjun, et al. Bio-based, nontoxic and flame-retardant cotton/alginate blended fibres as filling materials: thermal degradation properties, flammability and flame-retardant mechanism[J]. Compos Pt B:Engineering, 2020, 194:1-11.
[18] ZHANG Xiansheng, SHI Meiwu. Flame retardant vinylon/poly(m-phenylene isophthalamide) blended fibers with synergistic flame retardancy for advanced fireproof textiles[J]. J Hazard Mater, 2019, 365:9-15.
doi: S0304-3894(18)31009-4 pmid: 30399488
[19] ZHANG Fengqi, WANG Bin, XU Yingjun, et al. Convenient blending of alginate fibers with polyamide fibers for flame-retardant non-woven fabrics[J]. Cellulose, 2020, 27(14):8341-8349.
doi: 10.1007/s10570-020-03331-2
[20] ALONGI Jenny, CIOBANU Mihaela, MALUCELLI Giulio. Cotton fabrics treated with hybrid organic-inorganic coatings obtained through dual-cure processes[J]. Cellulose, 2011, 18(5):1335-1348.
doi: 10.1007/s10570-011-9564-5
[21] ZHANG Jianjun, JI Quan, SHEN Xiuhong, et al. Pyrolysis products and thermal degradation mechanism of intrinsically flame-retardant calcium alginate fibre[J]. Polymer Degradation and Stability, 2011, 96(5):936-942.
doi: 10.1016/j.polymdegradstab.2011.01.029
[22] TIAN Guangxiu, JI Quan, XU Dongmei, et al. The effect of zinc ion content on flame retardance and thermal degradation of alginate fibers[J]. Fibers and Polymers, 2013, 14(5):767-771.
doi: 10.1007/s12221-013-0767-2
[1] LIU Ke, CHEN Shuang, XIAO Ru. Preparation and properties of synergistic flame retardant copolyamide 6 fiber with phosphaphenanthrene group [J]. Journal of Textile Research, 2021, 42(07): 11-18.
[2] GU Weiwen, WANG Wenqing, WEI Lifei, SUN Chenying, HAO Dan, WEI Jianfei, WANG Rui. Influence of carbon dots on properties of flame retardant poly(ethylene terephthalate) [J]. Journal of Textile Research, 2021, 42(07): 1-10.
[3] TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers [J]. Journal of Textile Research, 2021, 42(05): 168-177.
[4] ZHOU Yingyu, WANG Rui, JIN Gaoling, WANG Wenqing. Research progress of applications of photo-induced surface modification technique in flame retardant fabrics [J]. Journal of Textile Research, 2021, 42(03): 181-189.
[5] XING Yusheng, HU Yi, CHENG Zhongling. Preparation and properties of Si/TiO2 composite carbon nanofibers [J]. Journal of Textile Research, 2021, 42(03): 36-43.
[6] JIANG Zhaohui, LI Yonggui, YANG Zitao, GUO Zengge, ZHANG Zhanqi, QI Yuanzhang, JIN Jian. Research progress in graphene/polymer composite fibers and textiles [J]. Journal of Textile Research, 2021, 42(03): 175-180.
[7] YANG Yaru, SHEN Xiaojun, TANG Bolin, NIU Mei. Halogen-free flame retardant finishing of ultra-high molecular weight polyethylene fiber [J]. Journal of Textile Research, 2020, 41(11): 109-115.
[8] LIU Yanchun, BAI Gang. Application of berberine in polyacrylonitrile/cellulose acetate composite fiber dyeing [J]. Journal of Textile Research, 2020, 41(05): 94-98.
[9] SONG Le, SHEN Lanping, HUANG Xianwen, HENG Fangfang, MA Hongbo, OUYANG Qin, CHEN Peng, WANG Xuan. Preparation and properties of lignin/polyacrylonitrile composite fibers [J]. Journal of Textile Research, 2020, 41(02): 7-12.
[10] LI Mingming, CHEN Ye, LI Xia, WANG Huaping. Influence of spinning process on property of parallel composite polyester fiber [J]. Journal of Textile Research, 2019, 40(12): 16-20.
[11] WANG Fanghe, WANG Rui, WEI Lifei, WANG Zhaoying, ZHANG Anying, WANG Deyi. Preparation and properties of layer-by-layer self-assembled flame retardant modified polyester fabrics [J]. Journal of Textile Research, 2019, 40(11): 106-112.
[12] CHEN Yong, WANG Ying, HE Feng, WANG Jing, ZHU Zhiguo, DONG Zhenfeng, WANG Rui. Kinetics and properties of phosphorus flame retardant copolymerized polyester [J]. Journal of Textile Research, 2019, 40(10): 13-19.
[13] REN Yuanlin, JIANG Li'na, HUO Tongguo, TIAN Tian. Research progress on flame retardant modification of polyacrylonitrile fiber [J]. Journal of Textile Research, 2019, 40(08): 181-188.
[14] WU Jiao, YU Husheng, WAN Xingyun, TIAN Ping, LI Huimin, HOU Xiaoxin. Preparation and properties of anti-bacterial, anti-mite and anti-mildew functional modified viscose fibers [J]. Journal of Textile Research, 2019, 40(07): 19-23.
[15] QIN Yimin. Physicochemical properties and bioactivities of chitosan fibers [J]. Journal of Textile Research, 2019, 40(05): 170-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!