Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (07): 1-10.doi: 10.13475/j.fzxb.20201001410

• Invited Column: New Flame Retardant Technology for Textile Materials •     Next Articles

Influence of carbon dots on properties of flame retardant poly(ethylene terephthalate)

GU Weiwen1, WANG Wenqing1,2,3, WEI Lifei1,4, SUN Chenying1, HAO Dan1, WEI Jianfei1,2,3, WANG Rui1,2,3()   

  1. 1. School of Material Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029, China
    3. Beijing Engineering Research Center of Textile Nano Fiber, Beijing 100029, China
    4. Polymer Research Institute, Sichuan University, Chengdu, Sichuan 610065, China
  • Received:2020-10-07 Revised:2021-03-18 Online:2021-07-15 Published:2021-07-22
  • Contact: WANG Rui E-mail:clywangrui@bift.edu.cn

Abstract:

In order to explore the effects of zero-dimensional carbon nanomaterials-carbon dots (CDs) on the thermodynamic, flame-retardant, mechanical and fluorescent properties, a copolymer flame retardant with a good flame-retardant effect on poly(ethylene terephthalate) (PET) was selected. 2-carboxyethyl phenyl hypophosphorous acid (CEPPA) and carbon dots were added to the PET matrix by in-situ polymerization, and the effect of carbon dot addition on various properties of FRPET was studied. The effect of different carbon dots on the performance of FRPET was analyzed through limiting oxygen index (LOI), vertical combustion (UL94), cone calorimetry (CONE) and other tests. The results of the study show that the LOI value of FRPET reaches up to 34%, when the carbon dots addition is 1.50% and the vertical combustion is at the V-0 level. Compared to FRPET with only CEPPA addition, the ignition time is extended and the peak heat release rate reduced, the average heat release rate and the total heat release decreased. In addition, the mechanical properties of FRPET after the addition of CDs are also greatly improved and give FRPET fluorescent properties, which is beneficial for broadening the application fields of FRPET.

Key words: carbon dots, fluorescence, carbon nanomaterials, polyester, flame retardant fiber, functional fiber

CLC Number: 

  • TQ324.8

Tab.1

Formula of flame retardant copolymer%"

样品名称 CEPPA中磷的
质量分数
碳点(CDs)的
质量分数
PET
FRPET 1
FRPET-0.25CDs 1 0.25
FRPET-0.50CDs 1 0.50
FRPET-0.75CDs 1 0.75
FRPET-1.00CDs 1 1.00
FRPET-1.50CDs 1 1.50
FRPET-2.00CDs 1 2.00

Fig.1

Fluorescent property,morphology and particle size distribution of gelatin-based carbon dots. (a)Photoluminescence spectrum; (b) TEM image;(c) Particle size distribution histogram"

Fig.2

Infrared spectrum of gelatin-based carbon dots"

Fig.3

Formation schematic of PET, FRPET and FRPET-CDs"

Fig.4

TG (a) and DTG (b) curves of FRPET with different carbon dots additions"

Tab.2

Thermogravimetric test results of carbon dots /CEPPA/PET copolymer"

样品名称 T5%/℃ 最大质量损失
速率/(%·min-1)
Tmax/℃ 700 ℃时
残炭量/%
PET 389.63 20.55 432.57 7.49
FRPET 380.59 19.27 435.43 9.09
FRPET-0.25CDs 382.93 19.18 436.74 8.00
FRPET-0.50CDs 381.76 20.11 431.60 9.68
FRPET-0.75CDs 383.63 20.01 433.48 10.15
FRPET-1.00CDs 382.88 21.26 431.71 11.02
FRPET-1.50CDs 383.95 19.77 430.78 11.93
FRPET-2.00CDs 378.72 18.29 430.57 12.08

Fig.5

DSC curve of FRPET with different carbon dots additions. (a) Heating; (b) Cooling"

Tab.3

DSC data of flame retardant copolymerization"

样品名称 Tg/℃ Tc/℃ Tm/℃
PET 64 209 245
FRPET 69 153 219
FRPET-0.25CDs 63 164 230
FRPET-0.50CDs 67 163 229
FRPET-0.75CDs 60 158 228
FRPET-1.00CDs 70 154 229
FRPET-1.50CDs 62 151 228
FRPET-2.00CDs 67 150 227

Tab.4

LOI value and UL94 test results of carbon dots/CEPPA/PET copolymer"

样品名称 LOI值/% UL94测试
t1/s t2/s 级别
PET 21 31.6 11.941 -
FRPET 31 1.01 1.16 V-0
FRPET-0.25CDs 28 0.65 0.72 V-0
FRPET-0.50CDs 31 1.22 0.63 V-0
FRPET-0.75CDs 33 0.89 0.9 V-0
FRPET-1.00CDs 34 0.89 0.76 V-0
FRPET-1.50CDs 34 0.65 0.72 V-0
FRPET-2.00CDs 26 0.92 1.08 V-0

Fig.6

Conical calorimetric curves of FRPET with different carbon dots additions"

Tab.5

Cone calorimetry test results of carbon dots/CEPPA/PET copolymer"

样品名称 引燃时间/s 热释放速率峰值/(kW·m-2) 平均热释放速率/(kW·m-2) 总热释放量/(MJ·m-2)
PET 51 915.85 241.2 65.22
FRPET 55 717.47 145.5 52.66
FRPET-0.25CDs 54 627.97 125.6 46.35
FRPET-0.50CDs 53 581.53 139.4 50.89
FRPET-0.75CDs 52 631.91 139.5 51.22
FRPET-1.00CDs 59 623.32 147.9 52.78
FRPET-1.50CDs 58 626.89 126.1 47.06
FRPET-2.00CDs 62 732.25 139.2 51.29

Fig.7

SEM images of composite carbon residue after cone calorimetry test"

Fig.8

Infrared spectra of carbon residue of PET and PET flame retardant copolymers"

Tab.6

Mechanical properties test results of carbon dots/CEPPA/PET copolymer"

样品名称 拉伸强度/MPa 弹性模量/MPa 断裂伸长率/%
PET 46.37 785.52 6.80
FRPET 55.82 1 119.99 7.60
FRPET-0.25CDs 56.21 1 122.21 7.20
FRPET-0.50CDs 58.88 1 191.78 7.60
FRPET-0.75CDs 59.77 1 308.45 8.40
FRPET-1.00CDs 51.49 1 372.96 5.40
FRPET-1.50CDs 51.18 1 203.80 7.61
FRPET-2.00CDs 49.73 1 063.78 5.20

Fig.9

Photoluminescence spectra of as-prepared carbon dots/CEPPA/PET copolymer excited by light"

[1] 梁科文, 王锐, 朱志国, 等. 三聚氰胺氰尿酸盐对阻燃PET的影响[J]. 纺织学报, 2012, 33(11):20-26.
LIANG Kewen, WANG Rui, ZHU Zhiguo, et al. Influence of melamine cyanurate on flame retardancy of poly(ethylene terephthalate)[J]. Journal of Textile Research, 2012, 33(11):20-26.
[2] 张国强, 王锐, 朱志国, 等. 新型抗静电聚酯纤维的制备及其结构性能[J]. 纺织学报, 2013, 34(1):7-11.
ZHANG Guoqiang, WANG Rui, ZHU Zhiguo, et al. Preparation, structure and properties of new antistatic polyester fiber[J]. Journal of Textile Research 2013, 34(1):7-11.
[3] FANG Y, LIU X, TAO X. Intumescent flame retardant and anti-dripping of PET fabrics through layer-by-layer assembly of chitosan and ammonium polyphosphate[J]. Progress in Organic Coatings, 2019, 134:162-168.
doi: 10.1016/j.porgcoat.2019.05.010
[4] ZHAO H B, WANG Y Z. Design and synjournal of PET-based copolyesters with flame-retardant and antidripping performance[J]. Macromolecular Rapid Communications, 2017, 38(23):1700451.
doi: 10.1002/marc.v38.23
[5] 王访鹤, 王锐, 魏丽菲, 等. 层层自组装阻燃改性聚酯织物的制备及其性能[J]. 纺织学报, 2019, 40(11):106-112.
WANG Fanghe, WANG Rui, WEI Lifei, et al. Preparation and properties of layer-by-layer self-assembled flame retardant modified polyester fabrics[J]. Journal of Textile Research, 2019, 40(11):106-112.
[6] ŁUKAWSKI D, GRZESKOWIAK W, LEKAWA-RAUS A, et al. Flame retardant effect of lignin/carbon nanotubes/potassium carbonate composite coatings on cotton roving[J]. Cellulose, 2020, 27(12):7271-7281.
doi: 10.1007/s10570-020-03270-y
[7] LEE S, KIM H M, SEONG D G, et al. Synergistic improvement of flame retardant properties of expandable graphite and multi-walled carbon nanotube reinforced intumescent polyketone nanocomposites[J]. Carbon, 2019, 143:650-659.
doi: 10.1016/j.carbon.2018.11.050
[8] SHABESTARI M E, KALALI E N, GONZÁLEZ V J, et al. Effect of nitrogen and oxygen doped carbon nanotubes on flammability of epoxy nanocomposites[J]. Carbon, 2017, 121:193-200.
doi: 10.1016/j.carbon.2017.05.087
[9] CHAVALI K S, PETHSANGAVE D A, PATANKAR K C, et al. Graphene-based intumescent flame retardant on cotton fabric[J]. Journal of Materials Science, 2020, 55(29):14197-14210.
doi: 10.1007/s10853-020-04989-6
[10] ZABIHI O, AHMADI M, LI Q, et al. A sustainable approach to scalable production of a graphene based flame retardant using waste fish deoxyribonucleic acid[J]. Journal of Cleaner Production, 2020, 247:119150.
doi: 10.1016/j.jclepro.2019.119150
[11] ZHOU K, GAO R. The influence of a novel two dimensional graphene-like nanomaterial on thermal stability and flammability of polystyrene[J]. Journal of Colloid and Interface Science, 2017, 500:164-171.
doi: 10.1016/j.jcis.2017.04.018
[12] YU R, LIU J, GAO D, et al. Striking effect of nanosized carbon black modified by grafting sodium sulfonate on improving the flame retardancy of polycarbonate[J]. Composites Communications, 2020, 20:100359.
doi: 10.1016/j.coco.2020.100359
[13] CHEN Q, WEN X, CHEN H, et al. Study of the effect of nanosized carbon black on flammability and mechanical properties of poly(butylene succinate)[J]. Polymers for Advanced Technologies, 2015, 26(2):128-135.
doi: 10.1002/pat.3431
[14] 魏丽菲, 王锐. 碳基纳米材料在聚合物阻燃中的研究进展[J]. 高分子材料科学与工程, 2019, 35(9):169-176.
WEI Lifei, WANG Rui. Progress in carbon-based nanomaterials in flame retardant polymers[J]. Polymer Materials Science and Engineering, 2019, 35(9):169-176.
[15] GAO D, ZHAO H, CHEN X, et al. Recent advance in red-emissive carbon dots and their photoluminescent mechanisms[J]. Materials Today Chemistry, 2018, 9:103-113.
doi: 10.1016/j.mtchem.2018.06.004
[16] GUO Y, YANG L, LI W, et al. Carbon dots doped with nitrogen and sulfur and loaded with copper(Ⅱ) as a “turn-on” fluorescent probe for cystein, glutathione and homocysteine[J]. Microchimica Acta, 2016, 183(4):1409-1416.
doi: 10.1007/s00604-016-1779-6
[17] SONG Y, ZHU S, SHAO J, et al. Polymer carbon dots-a highlight reviewing their unique structure, bright emission and probable photoluminescence mechanism[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2017, 55(4):610-615.
doi: 10.1002/pola.28416
[18] LIN L, ZHANG S. Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes[J]. Chemical Communications, 2012, 48(82):10177-10179.
doi: 10.1039/c2cc35559k
[19] DONG Y, CHEN C, ZHENG X, et al. One-step and high yield simultaneous preparation of single- and multi-layer graphene quantum dots from CX-72 carbon black[J]. Journal of Materials Chemistry, 2012, 22(18):8764-8766.
doi: 10.1039/c2jm30658a
[20] HE X, LI H, LIU Y, et al. Water soluble carbon nanoparticles: hydrothermal synjournal and excellent photoluminescence properties[J]. Colloids and Surfaces B: Biointerfaces, 2011, 87(2):326-332.
doi: 10.1016/j.colsurfb.2011.05.036
[21] LI H, HE X, KANG Z, et al. Water-soluble fluorescent carbon quantum dots and photocatalyst design[J]. Angewandte Chemie International Edition, 2010, 49(26):4430-4434.
doi: 10.1002/anie.200906154
[22] MITRA S, CHANDRA S, PATHAN S H, et al. Room temperature and solvothermal green synjournal of self passivated carbon quantum dots[J]. RSC Advances, 2013, 3(10):3189.
doi: 10.1039/c2ra23085b
[23] PENG H, TRAVAS-SEJDIC J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates[J]. Chemistry of Materials, 2009, 21(23):5563-5565.
doi: 10.1021/cm901593y
[24] CHUN L, LIU W, SUN X, et al. Excitation dependent emission combined with different quenching manners supports carbon dots to achieve multi-mode sensing[J]. Sensors and Actuators B: Chemical, 2018, 263:1-9.
doi: 10.1016/j.snb.2018.02.050
[25] ATCHUDAN R, EDISON T, ASEER K R, et al. Hydrothermal conversion of magnolia liliiflora into nitrogen-doped carbon dots as an effective turn-off fluorescence sensing, multi-colour cell imaging and fluorescent ink[J]. Colloids and Surfaces B: Biointerfaces, 2018, 169:321-328.
doi: 10.1016/j.colsurfb.2018.05.032
[26] WANG B, MU Y, YIN H, et al. Formation and origin of multicenter photoluminescence in zeolite-based carbogenic nanodots[J]. Nanoscale, 2018, 10(22):10650-10656.
doi: 10.1039/C8NR02043D
[27] YE R, XIANG C, LIN J, et al. Coal as an abundant source of graphene quantum dots[J]. Nat Commun, 2013, 4:2943.
doi: 10.1038/ncomms3943
[28] XIAO D, YUAN D, HE H, et al. Microwave-assisted one-step green synjournal of amino-functionalized fluorescent carbon nitride dots from chitosan[J]. Luminescence, 2013, 28(4):612-615.
doi: 10.1002/bio.v28.4
[29] YANG Z, XU M, LIU Y, et al. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate[J]. Nanoscale, 2014, 6(3):1890-1895.
doi: 10.1039/C3NR05380F
[30] WU X, LI Y, YANG S, et al. Discriminative detection of mercury (Ⅱ) and hydrazine using a dual-function fluorescent probe[J]. Luminescence, 2020, 35(5):754-762.
doi: 10.1002/bio.v35.5
[31] TANG M, REN G, CHAI F. A facile synjournal of magnetic fluorescence Fe3O4-carbon dots for the detection and removal of Hg2+[J]. New Journal of Chemistry, 2020, 44(16):6635-6642.
doi: 10.1039/D0NJ00275E
[32] ZHAO Y, CHEN D, YANG J, et al. Visual and fast detection of trace copper ions using biosensor based on fret[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 217:101-106.
doi: 10.1016/j.saa.2019.03.082
[33] SUN Y, ZENG X, XIAO Y, et al. Novel dual-function near-infrared Ⅱ fluorescence and PET probe for tumor delineation and image-guided surgery[J]. Chemical Science, 2018, 9(8):2092-2097.
doi: 10.1039/C7SC04774F
[34] ZHENG Z, GENG W C, GAO J, et al. Ultrasensitive and specific fluorescence detection of a cancer biomarker via nanomolar binding to a guanidinium-modified calixarene[J]. Chemical Science, 2018, 9(8):2087-2091.
doi: 10.1039/C7SC04989G
[35] FENG T, AI X, AN G, et al. Correction to charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency[J]. ACS Nano, 2016, 10(5):5587-5587.
doi: 10.1021/acsnano.6b02794
[36] FANG S, XIA Y, LV K, et al. Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4[J]. Applied Catalysis B: Environmental, 2016, 185:225-232.
doi: 10.1016/j.apcatb.2015.12.025
[37] SUZUKI K, MALFATTI L, CARBONI D, et al. Energy transfer induced by carbon quantum dots in porous zinc oxide nanocomposite films[J]. The Journal of Physical Chemistry C, 2015, 119(5):2837-2843.
doi: 10.1021/jp510661d
[38] LI Y, ZHANG W, JIANG X, et al. Investigation of photo-induced electron transfer between amino-functionalized graphene quantum dots and selenium nanoparticle and it's application for sensitive fluorescent detection of copper ions[J]. Talanta, 2019, 197:341-347.
doi: 10.1016/j.talanta.2019.01.036
[39] MA C, ZHU Z, WANG H, et al. A general solid-state synjournal of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications[J]. Nanoscale, 2015, 7(22):10162-10169.
doi: 10.1039/C5NR01757B
[40] KONG B, ZHU A, DING C, et al. Carbon dot-based inorganic-organic nanosystem for two-photon imaging and biosensing of pH variation in living cells and tissues[J]. Advanced Materials, 2012, 24(43):5844-5848.
doi: 10.1002/adma.201202599
[41] 高建伟, 王锐, 董振峰, 等. 磷氟协同阻燃PET的制备及性能研究[J]. 北京服装学院学报(自然科学版), 2019, 39(2):1-9.
GAO Jianwei, WANG Rui, DONG Zhenfeng, et al. Preparation and properties of PET with synergistic flame retardant containing phosphorus and fluoride[J]. Journal of Beijing Institute of Clothing Technology(Natural Science Edition), 2019, 39(2):1-9.
[42] 陈咏, 王颖, 何峰, 等, 共聚型磷系阻燃聚酯聚合反应动力学及其性能[J]. 纺织学报, 2019, 40(10):13-19.
CHEN Yong, WANG Ying, HE Feng, et al. Kinetics and properties of phosphorus flame retardant copolymerized polyester[J]. Journal of Textile Research, 2019, 40(10):13-19.
[43] TANG S, WACHTENDORF V, KLACK P, et al. Enhanced flame-retardant effect of a montmorillonite/phosphaphenanthrene compound in an epoxy thermoset[J]. RSC Advances, 2017, 7(2):720-728.
doi: 10.1039/C6RA25070J
[1] LIU Ke, CHEN Shuang, XIAO Ru. Preparation and properties of synergistic flame retardant copolyamide 6 fiber with phosphaphenanthrene group [J]. Journal of Textile Research, 2021, 42(07): 11-18.
[2] XU Kai, TIAN Xing, CAO Ying, HE Yaqi, XIA Yanzhi, QUAN Fengyu. Preparation and property of flame retardant polyester/calcium alginate fiber composites [J]. Journal of Textile Research, 2021, 42(07): 19-24.
[3] LIN Shenggen, LIU Xiaohui, SU Xiaowei, HE Ju, REN Yuanlin. Preparation and properties of Lyocell fibers and fabrics modified with new phytic acid based flame retardant [J]. Journal of Textile Research, 2021, 42(07): 25-30.
[4] LI Fengyan, YE Tianyu, ZHAN Xiaoqing, ZHAO Jian, LI Danyang, WANG Rui. Preparation and properties of puncture-resistant fabrics made from polyester and aramid or ultrahigh molecular weight polyethylene compound yarns [J]. Journal of Textile Research, 2021, 42(07): 82-88.
[5] ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109.
[6] XING Yusheng, HU Yi, CHENG Zhongling. Preparation and properties of Si/TiO2 composite carbon nanofibers [J]. Journal of Textile Research, 2021, 42(03): 36-43.
[7] GUAN Zhenyu, ZHOU Wenle, ZHANG Yumei, WANG Huaping. Kinetic study on synthesis of bottle polyester using Ti-Mg catalyst [J]. Journal of Textile Research, 2021, 42(03): 64-70.
[8] MENG Lingling, WEI Qufu, YAN Zhongjie, ZHONG Zhenzhen, WANG Xiaohui, SHEN Jiayu, CHEN Hongwei. Preparation and properties of Ag/ZnO composite film deposited polyester fabrics by magnetron sputtering [J]. Journal of Textile Research, 2021, 42(03): 143-148.
[9] HUANG Di, LI Fang, LI Gang. Preparation and performance of polyester/silk woven heart valve [J]. Journal of Textile Research, 2021, 42(02): 74-79.
[10] GUAN Binbin, LI Qing, CHEN Linghui, XU Yuting, FAN Zenglu. Fluorescence detection of Cr(VI) from printing and dyeing wastewater by zirconium-organic framework [J]. Journal of Textile Research, 2021, 42(02): 122-128.
[11] JIN Linlin, TIAN Junkai, LI Jiawei, QI Dongming, SHEN Xiaowei, WU Chuntao. Synthesis and properties of biodegradable polyglycolic acid oligomer modified polyester [J]. Journal of Textile Research, 2021, 42(01): 16-21.
[12] SHAO Jingfeng, LI Ning, CAI Zaisheng. Parameters optimization on polyester drawn textured yarn based on fuzzy multi-criteria [J]. Journal of Textile Research, 2021, 42(01): 46-52.
[13] CHEN Kang, JIANG Quan, JI Hong, ZHANG Yang, SONG Minggen, ZHANG Yumei, WANG Huaping. Temperature related creep rupture mechanism of high-tenacity polyester industrial fiber [J]. Journal of Textile Research, 2020, 41(11): 1-9.
[14] WANG Qiuping, ZHANG Ruiping, LI Chenghong, ZHANG Gecheng. Preparation and characterization of conductive polyester nonwovens [J]. Journal of Textile Research, 2020, 41(10): 116-121.
[15] CHEN Yong, WANG Jingjing, WANG Chaosheng, GU Donghua, WU Jing, WANG Huaping. Effect of oligomers on crystalline properties of polytrimethylene terephthalate [J]. Journal of Textile Research, 2020, 41(10): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 33 -34 .
[2] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 35 -36 .
[3] . [J]. JOURNAL OF TEXTILE RESEARCH, 2003, 24(06): 109 -620 .
[4] . [J]. JOURNAL OF TEXTILE RESEARCH, 2004, 25(02): 105 -107 .
[5] PAN Xu-wei;GU Xin-jian;HAN Yong-sheng;CHENG Yao-dong. Research on quick response of apparel supply chain for collaboration[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 54 -57 .
[6] HUANG Xiao-hua;SHEN Ding-quan. Degumming and dyeing of pineapple leaf fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 75 -77 .
[7] WANG Ju-ping;YIN Jia-min;PENG Zhao-qing;ZHANG Feng. Ultrasonic wave aided enzymatic washing of reactive dyed fabrics[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 93 -95 .
[8] ZHONG Zhi-li;WANG Xun-gai. Application prospect of nanofibers[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(1): 107 -110 .
[9] ZHANG Jin-qiu;ZHANG Hua;HAO Xin-min;JIANG Feng-qin. Relationship between high temperature scouring time and degumming quality of hemp fiber[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(2): 81 -83 .
[10] YIN Xiu-lian;CHENG Xian-yi. Progress in research on computer-aided color matching[J]. JOURNAL OF TEXTILE RESEARCH, 2006, 27(3): 106 -110 .