Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (02): 74-79.doi: 10.13475/j.fzxb.20201008207

• Textile Engineering • Previous Articles     Next Articles

Preparation and performance of polyester/silk woven heart valve

HUANG Di1,2, LI Fang1,2, LI Gang1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
    2. National Engineering Laboratory for Modern Silk, Suzhou, Jiangsu 215123, China
  • Received:2020-10-29 Revised:2020-11-25 Online:2021-02-15 Published:2021-02-23
  • Contact: LI Gang E-mail:tcligang@suda.edu.cn

Abstract:

In order to develop an artificial heart valve with required mechanical properties and blood-proof performance, polyester (PET) multifilament and degummed silk fibroin (SF) were used for preparing woven artificial heart valve fabric (AHVF) through optimized design experiments on a sample weaving machine, with different structures, yarn linear densities and fabric densities. The optimization results show that when the thickness of AHVF is as thin as (0.52±0.1) mm, the AHVF demonstrates good hydro-philicity with contact angel of (60°±1.2°) which is closed to human heart valve. It is shown that AHVF has anisotropic mechanical properties and low permeability, with warp elastic modulus being 60~100 MPa, warp breaking strength 20~40 MPa, weft elastic modulus 7~50 MPa, weft breaking strength 7.5~20 MPa, and water permeability lower than 300 mL/(cm 2·min). Such properties of AHVF meet the standards for heart valve materials, indicating the feasibility of the AHVF for heart valve application.

Key words: polyester, silk, woven heart valve fabric, mechanical property, liquid permeability

CLC Number: 

  • TS106

Fig.1

Flow chart of preparation for PET/SF woven heart valve. (a) Washing and sizing; (b) Weaving;(c) Washing and desizing"

Tab.1

Orthogonal experiment factors and levels"

水平 织物组织
A
原料(经/纬)
B
密度/(根·(10 cm)-1)
C
经向 纬向
1 平纹 涤纶/涤纶 500 200
2 二上二下斜纹 涤纶/蚕丝 500 300
3 三上一下斜纹 蚕丝/蚕丝 500 400

Tab.2

Parameters of samples"

编号 织物组织 经纱 纬纱 纬纱
线密度
密度/
(根·(10 cm)-1)
经向 纬向
1# 平纹 涤纶 涤纶 3.33 tex 500 200
2# 二上二下斜纹 涤纶 蚕丝 3.33 tex 500 200
3# 三上一下斜纹 蚕丝 蚕丝 8.33(36 f) tex 500 200
4# 平纹 涤纶 蚕丝 3.33 tex 500 300
5# 二上二下斜纹 蚕丝 蚕丝 8.33(36 f) tex 500 300
6# 三上一下斜纹 涤纶 涤纶 3.33 tex 500 300
7# 平纹 蚕丝 蚕丝 8.33(36 f) tex 500 400
8# 二上二下斜纹 涤纶 涤纶 3.33 tex 500 400
9# 三上一下斜纹 涤纶 蚕丝 3.33 tex 500 400

Fig.2

SEM photographs of yarns(×1 000)"

Fig.3

FT-IR (a) and XRD (b) curves of yarns"

Fig.4

SEM images of samples(×50)"

Fig.5

Thickness of samples"

Tab.3

Range analysis of samples"

极差 A B C
RT/mm 0.05 0.14 0.07
RB/MPa 6.37 9.44 6.73
RE/MPa 12.43 17.71 14.03
RC/(°) 145.67 831.67 5.38
RW/(mL·(cm2·min)-1) 3.61 33.20 579.00

Fig.6

Breaking strength (a) and elastic modulus (b) of samples"

Fig.7

Contact angle of samples"

Fig.8

Water permeability of samples"

[1] DOHMEN P M, KONERTZZ W. Tissue-engineered heart valve scaffolds[J]. Ann Thorac Cardiovasc Surg, 2009,15(6):362-367.
[2] MURAT G, HOANG D L, JASON A B. Shear-thinning hydrogels for biomedical applications[J]. Soft Matter, 2011,8(2):260-272.
[3] WANG H, MORTEN B H. Oppositely charged gelatin nanospheres as building blocks for injectable and biodegradable gels[J]. Advanced Materials, 2011,23(12):119-124.
[4] SEWELL-LOFTIN M K, CHUN Y, KHADEMHO-SSEINI A. EMT-inducing biomaterials for heart valve engineering: taking cues from developmental biology[J]. Journal of Cardiovascular Translational Research, 2011,4(5):658-671.
[5] PADALA Muralidhar, KEELING William Brent, GUYTON Robert A, et al. Innovations in therapies for heart valve disease[J]. Circulation Journal, 2011,75(5):1028-1041.
doi: 10.1253/circj.cj-11-0289 pmid: 21478626
[6] FREDERICK J S, ROBERT J L. Calcification of tissue heart valve substitutes: progress toward understanding and prevention[J]. Annals of Thoracic Surgery, 2005,79(3):1072-1080.
[7] JONATHAN T B, GRETCHEN J M, LAURA A H. Aortic valve disease and treatment: the need for naturally engineered solutions[J]. Advanced Drug Delivery Reviews, 2011,63(4/5):242-268.
[8] VINEET R J, AVRUM I G. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology[J]. American Journal of Pathology, 2007,171(5):1407-1418.
[9] 严佳, 李刚. 医用纺织品的研究进展[J]. 纺织学报, 2020,41(9):191-200.
YAN Jia, LI Gang. Research progress on medical textiles[J]. Journal of Textile Research, 2020,41(9):191-200.
[10] 刘泽堃, 李刚, 李毓陵, 等. 生物医用纺织人造血管的研究进展[J]. 纺织学报, 2017,38(7):155-163.
LIU Zekun, LI Gang, LI Yuling, et al. Research progress of biomedical textile artificial blood vessel[J]. Journal of Textile Research, 2017,38(7):155-163.
[11] XIE M, LI Y, ZHAO Z, et al. Development of silk fibroin-derived nanofibrous drug delivery system in supercritical CO2[J]. Materials Letters, 2016,167:175-178.
[12] CARUBELLI I, SARATHCHANDRA P, et al. The potential of anisotropic matrices as substrate for heart valve engineering[J]. Biomaterials, 2014,35(6):1833-1844.
pmid: 24314554
[13] LIU Z, ZHENG Z, CHEN K, et al. A heparin-functionalized woven stent graft for endovascular exclusion[J]. Colloids and Surfaces B: Biointerfaces. 2019,180:118-126.
doi: 10.1016/j.colsurfb.2019.04.027 pmid: 31035055
[14] LI G, LIU Y, LAN P, et al. A prospective bifurcated biomedical stent with seamless woven structure[J]. Journal of The Textile Institute, 2013,104(9):1017-1023.
[15] 李刚, 李毓陵, 陈旭炜, 等. 分叉人造血管的制备技术研究[J]. 产业用纺织品, 2008,26(8):9-12.
LI Gang, LI Yuling, CHEN Xuwei, et al. Preparation technology of bifurcated artificial blood vessel[J]. Industrial Textiles, 2008,26(8):9-12.
[16] 刘泽堃, 李刚, 李毓陵, 等. 纤维基腔内隔绝分叉机织人造血管的研究[J]. 产业用纺织品, 2017,35(6):6-13.
LIU Zekun, LI Gang, LI Yuling, et al. Study on fiber-based endovascular graft exclusion with bifurcations[J]. Technical Textiles, 2017,35(6):6-13.
[17] LIU Z, LI G, ZHENG Z, et al. Silk fibroin-based woven endovascular prosjournal with heparin surface modifica-tion[J]. Journal of Materials Science Materials in Medicine, 2018,29(4):46.
doi: 10.1007/s10856-018-6055-3 pmid: 29651619
[18] GUO F, JIAO K, BAI Y, et al. Novel transcatheter aortic heart valves exhibiting excellent hemodynamic performance and low-fouling property[J]. Journal of Materials Science & Technology, 2019,35(1):207-215.
[1] SUN Yabo, LI Lijun, MA Chongqi, WU Zhaonan, QIN Yu. Simulation on tensile properties of tubular weft knitted fabrics based on ABAQUS [J]. Journal of Textile Research, 2021, 42(02): 107-112.
[2] YANG Ya, YAN Fengyi, WANG Hui, ZHANG Keqin. Protein adsorption and cell response on bio-interfaces of silk fibroin/octacalcium phosphate composites [J]. Journal of Textile Research, 2021, 42(02): 41-46.
[3] CAO Genyang, WANG Yunli, SHENG Dan, PAN Heng, XU Weilin. Promotion mechanism of color fastness to sublimation in thermovacuum environmental conditions for fibroin powder/pigment complex [J]. Journal of Textile Research, 2021, 42(02): 1-6.
[4] LU Peng, HONG Sisi, LIN Xu, LI Hui, LIU Guojin, ZHOU Lan, SHAO Jianzhong, CHAI Liqin. Preparation of reactive dye/polystyrene composite colloidal microspheres and their structural coloring on silk fabrics [J]. Journal of Textile Research, 2021, 42(01): 90-95.
[5] JIN Linlin, TIAN Junkai, LI Jiawei, QI Dongming, SHEN Xiaowei, WU Chuntao. Synthesis and properties of biodegradable polyglycolic acid oligomer modified polyester [J]. Journal of Textile Research, 2021, 42(01): 16-21.
[6] SHAO Jingfeng, LI Ning, CAI Zaisheng. Parameters optimization on polyester drawn textured yarn based on fuzzy multi-criteria [J]. Journal of Textile Research, 2021, 42(01): 46-52.
[7] SONG Xing, JIN Xiaoke, ZHU Chengyan, CAI Fengjie, TIAN Wei. 3D printing and mechanical properties of glass fiber/photosensitive resin composites [J]. Journal of Textile Research, 2021, 42(01): 73-77.
[8] WANG Ximing, CHENG Feng, GAO Jing, WANG Lu. Effect of cross-linking modification on properties of chitosan/polyoxyethylene nanofiber membranes towards wound care [J]. Journal of Textile Research, 2020, 41(12): 31-36.
[9] LIU Shuqiang, WU Jie, WU Gaihong, YIN Xiaolong, LI Fu, ZHANG Man. Surface modification of basalt fiber using nano-SiO2 [J]. Journal of Textile Research, 2020, 41(12): 37-41.
[10] SONG Guangzhou, TU Fangfang, DING Mengyao, DAI Mengnan, YIN Yin, DONG Fenglin, WANG Jiannan. Negatively enhanced modification of silk fibroin and its load ability to calcitonin gene-related peptide [J]. Journal of Textile Research, 2020, 41(12): 7-12.
[11] CHEN Kang, JIANG Quan, JI Hong, ZHANG Yang, SONG Minggen, ZHANG Yumei, WANG Huaping. Temperature related creep rupture mechanism of high-tenacity polyester industrial fiber [J]. Journal of Textile Research, 2020, 41(11): 1-9.
[12] WANG Shudong, MA Qian, WANG Ke, QU Caixin, QI Yu. Structure and biocompatibility of silk fibroin/gelatin blended hydrogels [J]. Journal of Textile Research, 2020, 41(11): 41-47.
[13] WANG Qiuping, ZHANG Ruiping, LI Chenghong, ZHANG Gecheng. Preparation and characterization of conductive polyester nonwovens [J]. Journal of Textile Research, 2020, 41(10): 116-121.
[14] CHEN Yong, WANG Jingjing, WANG Chaosheng, GU Donghua, WU Jing, WANG Huaping. Effect of oligomers on crystalline properties of polytrimethylene terephthalate [J]. Journal of Textile Research, 2020, 41(10): 1-6.
[15] HUANG Yangyang, LIU Wei, HUA Ying, ZHAO Zhongqi, XU Jin. Development of novel intelligent silk quilt for young children [J]. Journal of Textile Research, 2020, 41(10): 150-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!