Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (09): 137-143.doi: 10.13475/j.fzxb.20201102208

• Apparel Engineering • Previous Articles     Next Articles

Determination and application of air gap parameters in coverall fit analysis

WANG Shitan1, WANG Xiuhua1, WANG Yunyi1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design & Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2020-11-11 Revised:2021-02-25 Online:2021-09-15 Published:2021-09-27
  • Contact: WANG Yunyi E-mail:wangyunyi@dhu.edu.cn

Abstract:

This study was to quantify the interaction between human body and coverall garments, aiming to create a quantitative index for clothing fit analysis. Naked and clothed human bodies were scanned with 7 postures using a 3-D body scanner. 22 air gap parameters were extracted by 3-D scanned image analysis, from which 9 typical parameters were determined. An evaluation equation of clothing fit based on the typical air gap parameters was finally built using factor analysis. The results indicate that the newly proposed fit evaluation equation offers satisfactory evaluation effect. In addition, it is observed that arm lifting and bending postures would significantly reduce the air gap compared to the standing posture. In particular, the more complex the postures, the wider the range of influence; for instance for arm lifting and bending postures the crotch length decreased about 64%. Chest and back, hip and crotch and leg were identified as the primary regions influencing coverall fit.

Key words: air gap, clothing fit analysis, coverall, parameter, 3-D scanning

CLC Number: 

  • TS941.16

Fig.1

Test sample. (a) Front; (b) Back"

Tab.1

Detailed sizes of the test coverall cm"

衣长 胸围 腰围 臀围 肩宽 袖长 裆长
134.5 104 104 104 39 56 35

Tab.2

Basic information about the subjects"

年龄/岁 身高/cm 体重/kg 胸围/cm 腰围/cm 臀围/cm
25±3 160±2 50±2 82±3 60±2 88±4

Fig.2

Scanning postures. (a) Standing; (b) Arm lifting; (c) Bending"

Fig.3

Posture fixing device. (a) Arm position; (b) Bending position; (c) Foot position"

Fig.4

Diagram of air gap parameters. (a) Crotch length; (b) Thickness of air gap; (c) Area of air gap; (d) Volume of air gap"

Fig.5

Aligned images. (a) Standing; (b) Arm lifting 105°; (c) Arm lifting 135°; (d) Arm lifting 155°; (e) Bending action 1; (f) Bending action 2; (g) Bending action 3"

Fig.6

Division of the body into individual body parts"

Tab.3

Correlation between perceived fit rating and air gap parameters"

检验
指标
裆长差 整体厚度 腿部厚度 整体面积差 腰围截面
面积差
膝围截面
面积差
整体体
积差
手臂体
积差
腿部体
积差
r -0.892 -0.828 -0.898 -0.861 -0.834 -0.861 -0.868 -0.836 -0.908
P 0.003 0.010 0.003 0.006 0.010 0.006 0.006 0.009 0.002

Tab.4

Air gap size at different scanning postures"

扫描姿势 裆长差/
cm
整体厚度/
cm
腿部厚度/
cm
整体面积
差/cm2
腰围截面
面积差/cm2
膝围截面
面积差/cm2
整体
体积差/cm3
手臂体积
差/cm3
腿部体积
差/cm3
站姿 11.75 1.56 1.34 3 411.51 316.42 57.96 71 244.37 2 296.61 7 988.69
抬臂105° 8.36 1.63 1.06 3 432.04 309.63 47.51 71 267.32 2 172.57 5 898.66
抬臂135° 8.09 1.54 0.95 3 068.06 316.67 45.48 70 301.27 2 216.54 5 180.62
抬臂155° 7.56 1.474 0.88 2 908.03 288.64 43.74 69 487.95 2 116.46 4 911.12
弯腰动作1 6.01 1.17 0.75 2 276.60 318.20 43.90 65 741.81 2 268.68 4 604.49
弯腰动作2 4.34 1.14 0.58 1 799.98 257.25 39.61 64 185.68 2 168.90 3 107.19
弯腰动作3 4.23 0.99 0.57 1 639.71 238.21 39.42 62 228.11 2 003.06 3 030.31

Tab.5

Factor score coefficient matrix"

因子 裆长差 整体厚度 腿部厚度 整体面积差 腰围截面面积差 膝围截面面积差 整体体积差 手臂体积差 腿部体积差
1 0.159 0.291 0.166 0.25 -0.149 0.084 0.260 -0.378 0.100
2 -0.011 -0.240 -0.021 -0.162 0.450 0.094 -0.179 0.782 0.082

Tab.6

Total factor score and ranking"

姿势 F1 F2 F 排序
站姿 0.827 0.253 1.080 1
抬臂105° 0.786 -0.086 0.700 2
抬臂135° 0.276 0.068 0.344 3
抬臂155° 0.422 -0.196 0.226 4
弯腰动作1 -0.885 0.353 -0.532 5
弯腰动作2 -0.846 -0.032 -0.878 6
弯腰动作3 -0.580 -0.360 -0.940 7

Tab.7

Regression analysis result between representative indicators and other indicators"

指标 Y X a b R2 P
厚度 裆长差 整体厚度 8.383 -4.80 0.727 0.015
腿部厚度 0.945 -0.40 0.736 0.014
面积 腰围截面面积差 整体面积差 0.035 199.46 0.644 0.030
膝围截面面积差 0.007 27.16 0.646 0.029
体积 手臂体积差 整体体积差 0.013 1 946.54 0.540 0.022
腿部体积差 0.362 -1 529.95 0.878 0.009
[1] HUCK J, KIM Y. Coveralls for grass fire fighting[J]. International Journal of Clothing Science and Technology, 1997, 9(5):346-359.
doi: 10.1108/09556229710185497
[2] HUCK J, MAGANGA O, KIM Y. Protective overalls?: evaluation of garment design and fit[J]. International Journal of Clothing Science and Technology, 2007, 9(1):45-61.
doi: 10.1108/09556229710157876
[3] 张龙女, 王云仪, 李亿光. 油罐清洁连体作业服的开发和工效学评价[J]. 纺织学报, 2013, 34(8):105-109.
ZHANG Longnv, WANG Yunyi, LI Yiguang. Development and ergonomic evaluation of overall for oil tank cleaners[J]. Journal of Textile Research, 2013, 34(8):105-109.
[4] HAVENITH G, HEUS R. A test battery related to ergonomics of protective clothing[J]. Applied Ergonomics, 2004, 35(1):3-20.
doi: 10.1016/j.apergo.2003.11.001
[5] ASHDOWN S, LOKER S, SCHOENFELDER K, et al. Using 3D scans for fit analysis[J]. Journal of Textile and Apparel, Technology and Management, 2004, 4(1):1-12.
[6] ALEXANDER M, JO CONNEL L, PRESLEY A B. Clothing fit preferences of young female adult consumers[J]. International Journal of Clothing Science and Technology, 2005, 17(1):52-64.
doi: 10.1108/09556220510577961
[7] BOORADY L. Functional clothing-principles of fit[J]. Indian Journal of Fibre & Textile Research, 2011, 36:344-347.
[8] 许轶超, 丁永生. 服装合体性评价的研究方法与应用进展[J]. 纺织学报, 2007, 28(10):127-130.
XU Yichao, DING Yongsheng. Research and application of garment fit assessments[J]. Journal of Textile Research, 2007, 28(10):127-130.
doi: 10.1177/004051755802800204
[9] SONG H, ASHDOWN S P. An exploratory study of the validity of visual fit assessment from three-dimensional scans[J]. Clothing and Textiles Research Journal, 2010, 28(4):263-278.
doi: 10.1177/0887302X10376411
[10] LOKER S, ASHDOWN S, SCHOENFELDER K. Size-specific analysis of body scan data to improve apparel fit[J]. Journal of Textile and Apparel, Technology and Management, 2005, 4(3):1-15.
[11] LU Y, SONG G, LI J. A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning[J]. Applied Ergonomics, 2014, 45(6):1439-1446.
doi: 10.1016/j.apergo.2014.04.007
[12] WANG S, WANG X, WANG Y. Effects of clothing ease and body postures on the air gap and clothing coverage[J]. International Journal of Clothing Science and Technology, 2019, 31(4):578-594.
doi: 10.1108/IJCST-12-2018-0158
[13] 汪秀花. 基于衣下间隙的连体防护服活动性的量化表征研究[D]. 上海:东华大学, 2018:12-14.
WANG Xiuhua. Study on quantitative characterization of mobility of protective coveralls based on air gap[D]. Shanghai:Donghua University, 2018:12-14.
[1] REN Libing, CHEN Li, JIAO Wei. Microstructure characterization of multi-layer interlocked woven preforms based on quadratic functions [J]. Journal of Textile Research, 2021, 42(08): 76-83.
[2] YANG Tingting, GAO Yuanbo, ZHENG Yi, WANG Xueli, HE Yong. Thermal degradation kinetics and pyrolysis products of bio-based polyamide 56 fiber [J]. Journal of Textile Research, 2021, 42(04): 1-7.
[3] MENG Shuo, XIA Xuwen, PAN Ruru, ZHOU Jian, WANG Lei, GAO Weidong. Detection of fabric density uniformity based on convolutional neural network [J]. Journal of Textile Research, 2021, 42(02): 101-106.
[4] SHAO Jingfeng, LI Ning, CAI Zaisheng. Parameters optimization on polyester drawn textured yarn based on fuzzy multi-criteria [J]. Journal of Textile Research, 2021, 42(01): 46-52.
[5] LIU Yun, XIU Yi. NURBS surface model of digital mannequin based on B/S architecture [J]. Journal of Textile Research, 2020, 41(10): 137-143.
[6] WANG Jiugen, GUO Hao, HONG Yufang, CHEN Fanghua. Elastic parameters calculation of liners of self-lubricating spherical plain bearings [J]. Journal of Textile Research, 2020, 41(06): 61-68.
[7] ZHANG Zhengye, XIN Binjie, DENG Na, CHEN Yang, XING Wenyu. Research and application of algorithm for measuring hemp fiber cross-sectional parameters based on boundary tracking [J]. Journal of Textile Research, 2020, 41(02): 39-43.
[8] XIAO Ping, ZHANG Zhaohua, ZHOU Ying, LIU Jiakai, TANG Haoyuan. Influence of arm angular motion on clothing local thermal insulation [J]. Journal of Textile Research, 2020, 41(02): 109-114.
[9] LOU Shaohong. Automatic generation of A-type skirt model based onAutoCAD parametric function [J]. Journal of Textile Research, 2020, 41(01): 131-138.
[10] WANG Xianfeng, GAO Tiancheng, XIAO Jun. Research progress of stitching technology of composite materials [J]. Journal of Textile Research, 2019, 40(12): 169-177.
[11] WANG Xiaohui, LIU Yuegang, MENG Zhuo, SUN Yize. Optimization of process parameters for 3D additive screen printing based on genetic algorithm and neural network [J]. Journal of Textile Research, 2019, 40(11): 168-174.
[12] HU Ziting, ZHENG Xiaohui, FENG Mingming, WANG Yingjian, LIU Li, DING Songtao. Influence of air gap on thermal and moisture properties of permeable protective clothing [J]. Journal of Textile Research, 2019, 40(11): 145-150.
[13] WEI Tengxiang, LI Min, PENG Hongyun, FU Shaohai. Shape analysis of biaxial stretching coil of weft plain knitted cotton fabric [J]. Journal of Textile Research, 2019, 40(11): 64-68.
[14] CHEN Si, LU Yehu. Influence of air gap size on steam protective performance of fireproof fabric [J]. Journal of Textile Research, 2019, 40(10): 141-146.
[15] ZHOU Xiangqin, GU Yeqin, WU Zhenyu. Parameter characteristics of weft insertion mechanism of rapier loom capable of simply adjusting reed width [J]. Journal of Textile Research, 2019, 40(09): 173-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!