Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (06): 206-214.doi: 10.13475/j.fzxb.20210303109

• Comprehensive Review • Previous Articles     Next Articles

Application progress in cold protective clothing based on multiple intelligent technologies

MA Liang1, LI Jun1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education,Donghua University, Shanghai 200051, China
  • Received:2021-03-08 Revised:2021-09-12 Online:2022-06-15 Published:2022-07-15
  • Contact: LI Jun E-mail:lijun@dhu.edu.cn

Abstract:

Cold protective clothing needs to improve the functionality so as to better meet the thermal physiological requirements to protect various parts of human body. To improve the application of electronic, communication and computer technologies in cold protective clothing, this review article focuses on four types of technical issues to explore the difficulties and constraints of its application based on the development process of cold protective clothing. The review includes dynamic signal acquisition and transmission, application limitations of heating elements, design patterns of temperature control algorithms, and application of human physiological models. It was found that the monitoring and transmission functions of signals have low integration in cold protective clothing, the layout of the heating unit has no solid theoretical support, the design of the temperature control algorithm lacks a mechanism analysis of the physiological needs, and the application of the human body thermal physiological model has many limitations. The review indicates that it is necessary to develop a non-uniform intelligent temperature-control cold protective clothing with high functional integration, which can meet the thermal and physiological needs of different groups, and to build a complete performance evaluation system in future research.

Key words: cold protective clothing, intelligent technology, human thermal physiological model, functional clothing

CLC Number: 

  • TS941.16

Fig.1

Dynamic signal acquisition and data transmission"

Fig.2

Application of control algorithm and human physiological model"

[1] FRIEDMAN L S, ABASILIM C, FITTS R, et al. Clinical outcomes of temperature related injuries treated in the hospital setting, 2011-2018[J]. Environmental Research, 2020, 189: 109882.
doi: 10.1016/j.envres.2020.109882
[2] GASPARRINI A, GUO Y, HASHIZUME M, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study[J]. The Lancet, 2015, 386(9991): 369-375.
doi: 10.1016/S0140-6736(14)62114-0
[3] PAPADOPOULOS A M. State of the art in thermal insulation materials and aims for future develop-ments[J]. Energy and Buildings, 2005, 37(1): 77-86.
doi: 10.1016/j.enbuild.2004.05.006
[4] DAI L, CHANG D W, BAEK J B, et al. Carbon nanomaterials for advanced energy conversion and storage[J]. Small, 2012, 8(8): 1130-1166.
doi: 10.1002/smll.201101594
[5] 吴改红, 吴雄英, 丁雪梅, 等. 低温防护服的设计与评价[J]. 上海纺织科技, 2015, 43(4): 50-53.
WU Gaihong, WU Xiongying, DING Xuemei, et al. The design and evaluation of low temperature protective clothhing[J]. Shanghai Textile Science & and Technology, 2015, 43(4): 50-53.
[6] 王泽军, 王艾平, 杨天, 等. 寒冷环境下科学着装的基本策略研究[J]. 解放军预防医学杂志, 2020, 38(5): 7-9.
WANG Zhejun, WANG Aiping, YANG Tian, et al. Research on the basic strategy of scientific dressing in cold environment[J]. J Prev Med Chin PLA, 2020, 38(5): 7-9.
[7] RENBERG J, CHRISTIANSEN M T, WIGGEN Y N, et al. Metabolic rate and muscle activation level when wearing state-of-the-art cold-weather protective clothing during level and inclined walking[J]. Applied Ergonomics, 2020, 82: 102956.
doi: 10.1016/j.apergo.2019.102956
[8] MäKINEN H, JUSSILA K. Cold-protective clothing: types, design and standards, protective clothing[M]. Oxford: Woodhead Publishing, 2014: 3-38.
[9] WANG F, LEE H. Evaluation of an electrically heated vest (EHV) using a thermal manikin in cold environments[J]. The Annals of Occupational Hygiene, 2009, 54(1): 117-124.
[10] CHAN C Y L, BURTON D R. Local heating source for shallow water divers[J]. Journal of Power Sources, 1981, 6(3): 291-304.
doi: 10.1016/0378-7753(81)80033-X
[11] WANG F, KANG Z, ZHOU J. Model validation and parametric study on a personal heating clothing system (PHCS) to help occupants attain thermal comfort in unheated buildings[J]. Building and Environment, 2019, 162: 106308.
doi: 10.1016/j.buildenv.2019.106308
[12] KUMAR N, GUPTA S K. Progress and application of phase change material in solar thermal energy: an overview[J]. Materials Today: Proceedings, 2021, 44(1): 271-281.
doi: 10.1016/j.matpr.2020.09.465
[13] SU Y, ZHU W, TIAN M, et al. Intelligent bidirectional thermal regulation of phase change material incorporated in thermal protective clothing[J]. Applied Thermal Engineering, 2020, 174(1): 1-24.
[14] DENG Y, CAO B, LIU B, et al. Effects of local heating on thermal comfort of standing people in extremely cold environments[J]. Building and Environment, 2020, 185: 107256.
doi: 10.1016/j.buildenv.2020.107256
[15] KLUTH K, PENZKOFER M, STRASSER H. Age-related physiological responses to working in deep cold[J]. Hum Factor Ergon Manuf, 2013, 23(3): 163-172.
doi: 10.1002/hfm.20305
[16] KOJIMA K, HIRATA A, HASEGAWA K, et al. Risk management of heatstroke based on fast computation of temperature and water loss using weather data for exposure to ambient heat and solar radiation[J]. IEEE Access, 2018, 6(1): 3774-3785.
doi: 10.1109/ACCESS.2018.2791962
[17] LI D, GAO W. Physiological state assessment and prediction based on multi-sensor fusion in body area network[J]. Biomedical Signal Processing and Control, 2021, 65: 102340.
doi: 10.1016/j.bspc.2020.102340
[18] KALAIVAANI P T, KRISHNAMOORTHI R. Design and implementation of low power bio signal sensors for wireless body sensing network applications[J]. Microprocessors and Microsystems, 2020, 79(4): 1-14.
[19] CUNHA SILVEIRA R M, ROCHA DUTRA T D, SAMPAIO ALVES F P R, et al. Monitoring an environment using wireless sensor network[C]// International Conference on Internet Science. Perpignan: Springer, 2019: 292-301.
[20] CHAN S Y, CHAU C K. Development of artificial neural network models for predicting thermal comfort evaluation in urban parks in summer and winter[J]. Building and Environment, 2019, 164: 106364.
doi: 10.1016/j.buildenv.2019.106364
[21] DENG Z, CHEN Q. Artificial neural network models using thermal sensations and occupants' behavior for predicting thermal comfort[J]. Energy and Buildings, 2018, 174(1): 587-602.
doi: 10.1016/j.enbuild.2018.06.060
[22] SHANG L, LYU Y, HAN W. Microstructure and thermal insulation property of silica composite aerogel[J]. Materials, 2019, 12(933): 2-11.
doi: 10.3390/ma12010002
[23] ULBRICH M, LÜKEN M, MÜHLSTEFF J, et al. Chapter 19: wearable bioimpedance systems for home-care monitoring using BSNs[M]. 2nd ed. Oxford: Academic Press, 2021: 519-540.
[24] K B K, CH S M, MOHD ABDUL N, et al. Smart jacket for health monitoring using LabVIEW[J]. Materials Today Proceedings, 2020, 46(18):1-6.
doi: 10.1016/j.matpr.2020.02.868
[25] GANDHI V, SINGH J. An automated review of body sensor networks research patterns and trends[J]. Journal of Industrial Information Integration, 2020, 18: 100132.
doi: 10.1016/j.jii.2020.100132
[26] WANG Y, WANG H, XUAN J, et al. Powering future body sensor network systems: a review of power sources[J]. Biosensors and Bioelectronics, 2020, 166: 112410.
doi: 10.1016/j.bios.2020.112410
[27] GAO W, EMAMINEJAD S, NYEIN H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 2016, 529(7587): 509-514.
doi: 10.1038/nature16521
[28] KEUM K, EOM J, LEE J H, et al. Fully-integrated wearable pressure sensor array enabled by highly sensitive textile-based capacitive ionotronic devices[J]. Nano Energy, 2021, 79: 105479.
doi: 10.1016/j.nanoen.2020.105479
[29] QI K, ZHOU Y, OU K, et al. Weavable and stretchable piezoresistive carbon nanotubes-embedded nanofiber sensing yarns for highly sensitive and multimodal wearable textile sensor[J]. Carbon, 2020, 170(1): 464-476.
doi: 10.1016/j.carbon.2020.07.042
[30] KIM D, KWON J, HAN S, et al. Deep full-body motion network for a soft wearable motion sensing suit[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(1): 56-66.
doi: 10.1109/TMECH.2018.2874647
[31] KNIGHT J F, BABER C. Assessing the physical loading of wearable computers[J]. Appl Ergon, 2007, 38(2): 237-47.
doi: 10.1016/j.apergo.2005.12.008
[32] KNIGHT J F, BABER C. A tool to assess the comfort of wearable computers[J]. Human Factors, 2005, 47(1): 77-91.
doi: 10.1518/0018720053653875
[33] FAN X, LIN H, YE C, et al. Smart heating clothes based on bluetooth[C]// 14th International Conference on Computer Science & Education. Canada: IEEE, 2019: 200-203.
[34] CHEN Z, LI J, SONG W, et al. Smart wireless charging heating insoles: improving body thermal comfort of young males in an extremely cold environment[J]. Clothing and Textiles Research Journal, 2020, 11(1): 1-5.
[35] 马亮, 张欣, 应柏安. 面向防电磁辐射服装设计的生物电磁建模方法[J]. 服装学报, 2018, 3(6): 497-505.
MA Liang, ZHANG Xin, YING Baian, et al. Research on bio-electromagnetic model for electromagnetic[J]. Journal of Clothing, 2018, 3(6): 497-505.
[36] RASHED E A, GOMEZ-TAMES J, HIRATA A. Development of accurate human head models for personalized electromagnetic dosimetry using deep learning[J]. NeuroImage, 2019, 202: 116132.
doi: 10.1016/j.neuroimage.2019.116132
[37] 陈扬. 电热服的热性能分析与模拟[D]. 杭州: 浙江理工大学, 2018:16-30.
CHEN Yang. Thermal properties analysis and simulation of electrically heated garments[D]. Hangzhou: Zhejiang Sci-Tech University, 2018:16-30.
[38] YANG Y, QIAN J, CHEN Y. Multi-scale modeling and thermal transfer properties of electric heating fabrics system[J]. International Journal of Clothing Science and Technology, 2019, 31(6): 825-838.
doi: 10.1108/IJCST-03-2019-0026
[39] 李冉. 下肢障碍者用电加热户外防寒服设计与评价[D]. 上海: 东华大学, 2020:3-16.
LI Ran. Design and evaluation of electric-heating outdoor clothing for people with mobility challenge[D]. Shanghai: Donghua University, 2020:3-20.
[40] MA N, LU Y, XU F, et al. Development and performance assessment of electrically heated gloves with smart temperature control function[J]. International Journal of Occupational Safety and Ergonomics, 2020, 26(1): 46-54.
doi: 10.1080/10803548.2018.1457886
[41] CALABRESE B. Data integration and transfor-mation[M]. Oxford: Academic Press, 2019: 477-479.
[42] CHALISE P, NI Y, FRIDLEY B L. Network-based integrative clustering of multiple types of genomic data using non-negative matrix factorization[J]. Computers in Biology and Medicine, 2020, 118: 103625.
doi: 10.1016/j.compbiomed.2020.103625
[43] JAYARATNE M, NALLAPERUMA D, DE SILVA D, et al. A data integration platform for patient-centered e-healthcare and clinical decision support[J]. Future Generation Computer Systems, 2019, 92(1): 996-1008.
doi: 10.1016/j.future.2018.07.061
[44] NADAL S, ROMERO O, ABELLÓ A, et al. An integration-oriented ontology to govern evolution in big data ecosystems[J]. Information Systems, 2019, 79(1): 3-19.
doi: 10.1016/j.is.2018.01.006
[45] WU Q, LIU J, ZHANG L, et al. Effect of temperature and clothing thermal resistance on human sweat at low activity levels[J]. Building and Environment, 2020, 183: 107117.
doi: 10.1016/j.buildenv.2020.107117
[46] GUAN M, ANNAHEIM S, LI J, et al. Apparent evaporative cooling efficiency in clothing with continuous perspiration: a sweating manikin study[J]. International Journal of Thermal Sciences, 2019, 137(1): 446-455.
doi: 10.1016/j.ijthermalsci.2018.12.017
[47] NOMOTO A, TAKAHASHI Y, YODA S, et al. Measurement of local evaporative resistance of typical clothing ensemble using a sweating thermal manikin[J]. Journal of Environmental Engineering, 2019, 84(761): 653-660.
[48] KONG M, DANG T Q, ZHANG J, et al. Micro-environmental control for efficient local heating: CFD simulation and manikin test verification[J]. Building and Environment, 2019, 147(1): 382-396.
doi: 10.1016/j.buildenv.2018.10.018
[49] SONG W, LU Y, LIU Y, et al. Effect of partial-body heating on thermal comfort and sleep quality of young female adults in a cold indoor environment[J]. Building and Environment, 2020, 169: 106585.
doi: 10.1016/j.buildenv.2019.106585
[50] STEVENS K, FULLER M. Thermoregulation and clothing comfort[M]. Oxford: Woodhead Publishing, 2015: 117-138.
[51] WATSON L, POTTER A, GALLUCCI R, et al. Is baby too warm? The use of infant clothing, bedding and home heating in Victoria, Australia[J]. Early Human Development, 1998, 51(2): 93-107.
doi: 10.1016/S0378-3782(97)00085-6
[52] XIE Y, NIU J, ZHANG H, et al. Development of a multi-nodal thermal regulation and comfort model for the outdoor environment assessment[J]. Building and Environment, 2020, 176: 106809.
doi: 10.1016/j.buildenv.2020.106809
[53] MUBARAK S, KHANDAY M A, HAQ A U. Variational finite element approach to study heat transfer in the biological tissues of premature infants[J]. Journal of Thermal Biology, 2020, 92: 102669.
doi: 10.1016/j.jtherbio.2020.102669
[54] LIU G, WANG Z, LI C, et al. Heat exchange character and thermal comfort of young people in the building with solar radiation in winter[J]. Building and Environment, 2020, 179: 106937.
doi: 10.1016/j.buildenv.2020.106937
[55] KENNEY W L, WOLF S T, DILLON G A, et al. Temperature regulation during exercise in the heat: insights for the aging athlete[J]. Journal of Science and Medicine in Sport, 2020, 24(8):739-746.
doi: 10.1016/j.jsams.2020.12.007
[56] SALATA F, GOLASI I, VERRUSIO W, et al. On the necessities to analyse the thermohygrometric perception in aged people: a review about indoor thermal comfort, health and energetic aspects and a perspective for future studies[J]. Sustainable Cities and Society, 2018, 41(1): 469-480.
doi: 10.1016/j.scs.2018.06.003
[57] UDAYRAJ, WANG F. A three-dimensional conjugate heat transfer model for thermal protective clothing[J]. International Journal of Thermal Sciences, 2018, 130(1): 28-46.
doi: 10.1016/j.ijthermalsci.2018.04.005
[58] AGANOVIC A, STEFFENSEN M, CAO G. CFD study of the air distribution and occupant draught sensation in a patient ward equipped with protected zone venti-lation[J]. Building and Environment, 2019, 162: 106279.
doi: 10.1016/j.buildenv.2019.106279
[59] 唐元梁. 基于多尺度建模的人体热调节特性计算机模拟[D]. 合肥: 中国科学技术大学, 2014:2-18.
TANG Yuanliang. Computational simulation on human thermal regulation based on a multi-scale model[D]. Hefei: University of Science and Technology of China, 2014: 2-18.
[60] KANG Z, WANG F, UDAYRAJ. An advanced three-dimensional thermoregulation model of the human body: development and validation[J]. International Communications in Heat and Mass Transfer, 2019, 107(1): 34-43.
doi: 10.1016/j.icheatmasstransfer.2019.05.006
[61] LUO M, WANG Z, ZHANG H, et al. High-density thermal sensitivity maps of the human body[J]. Building and Environment, 2020, 167: 106435.
doi: 10.1016/j.buildenv.2019.106435
[62] SCHMIDT D, SCHLEE G, MILANI T L, et al. Thermal sensitivity mapping: warmth and cold detection thresholds of the human torso[J]. Journal of Thermal Biology, 2020, 93: 102718.
doi: 10.1016/j.jtherbio.2020.102718
[63] FILINGERI D, ZHANG H, ARENS E A. Thermosensory micromapping of warm and cold sensitivity across glabrous and hairy skin of male and female hands and feet[J]. Journal of Applied Physiology, 2018, 125(3): 723-736.
doi: 10.1152/japplphysiol.00158.2018
[1] WU Daiwei, LI Hongyan, DAI Yanyang, SU Yun, WANG Yunyi. Thermal function effectiveness and location of heating device in cold protective clothing [J]. Journal of Textile Research, 2020, 41(06): 118-124.
[2] SU Wenzhen, LU Yehu, WANG Fangming, SONG Wenfang. Development of novel air inflatable jacket and thermal insulating property evaluation [J]. Journal of Textile Research, 2020, 41(05): 140-145.
[3] SU Wenzhen, SONG Wenfang, LU Yehu, YANG Xiuyue. Thermal insulation of air inflatable cold protective clothing [J]. Journal of Textile Research, 2020, 41(02): 115-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!