Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (06): 197-205.doi: 10.13475/j.fzxb.20210401509

• Comprehensive Review • Previous Articles     Next Articles

Advances on antibacterial textiles

NAN Qingqing1, ZENG Qinghong1, YUAN Jingxuan1, WANG Xiaoqin1,2, ZHENG Zhaozhu1,2, LI Gang1,2,3()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215000, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
    3. Nantong Textile & Silk Industrial Technology Research Institute, Nantong, Jiangsu 226300, China
  • Received:2021-04-06 Revised:2022-03-17 Online:2022-06-15 Published:2022-07-15
  • Contact: LI Gang E-mail:tcligang@suda.edu.cn

Abstract:

In order to solve problems that bacterial resistance of antimicrobial agents, the short duration of antimicrobial activity and the complexity of antibacterial finishing process, the properties of fabrics, the functional characteristics, textile applications and antimicrobial mechanism of organic, inorganic and natural antimicrobial agents were systematically reviewed. At the same time, the advantages and disadvantages of different antibacterial finishing methods, such as impregnation, dip rolling and microencapsulation, were introduced and compared through the various antibacterial finishing treatments for functional yarns and fabrics with different antibacterial agents. Finally, it is predicted that multi-function agents and eco-friendly antibacterial finishing technologies will be developed in the future, so that antibacterial functional textiles can be developed in the direction of eco-friendly processing, low development costs, effective performance and comfortable wearing.

Key words: antibacterial agent, antibacterial finishing, functional textiles, comfort, antibacterial mechanism

CLC Number: 

  • TS195.5

Fig.1

Diagram of antibacterial mechanism of quaternary ammonium salt"

Tab.1

New antimicrobial agents and their performance characteristics"

名称 性能特点 参考文献
膨润土载纳米银 解决了纳米银会聚集的缺点,而且纳米银的粒径更小,抗菌性更好,不会产生耐药性 [34]
氧化直链淀粉/姜黄素/纳米银 具有很强的抗菌活性,很好的抗氧化活性和生物相容性,细菌不会产生耐药性 [35]
基于硫杂杯芳烃的季铵化合物 解决了微生物的耐药性 [36]
棉/石墨烯量子点/纳米银 增强纳米银的抗菌性,同时不会产生耐药性,并对具有耐药性的细菌有很好的抗菌作用 [37]
壳聚糖/抗菌肽微菌素J25杂化 抗菌活性极好并且在各种热和pH值环境下有稳定的活性,微生物不会产生耐药性,安全无毒 [38]
聚乙烯亚胺交联岩藻糖 对铜假绿单胞菌具有特异性的高效抗菌活性 [39]
氧化石墨烯/氧化铁纳米颗粒/银纳米颗粒 有更高的抗菌活性和抗菌效率,具有近红外吸收活性、可以反复使用、廉价且易于制备、不会产生耐药性 [40]

Fig.2

Preparation process of SiO2/Ag coated cotton/linen fabric"

Tab.2

Different finishing methods for antibacterial functional textiles"

方法 优点 缺点 参考
文献
浸渍法 抗菌性能好、持久抗菌性强、对织物的柔软性影响不大 需排放污水、对环境有污染 [61]
涂层法 工艺简单、对整理织物要求低、耐洗涤性好、抑菌性好 对织物的性能有影响 [62]
浸轧法 抗菌性好、抗菌持久性好 抗菌剂对织物有良好的吸附性、影响织物性能 [63]
静电层层
自组装法
抗菌活性持续时间长、提高了药物的储集效果和缓释效果 对织物要求低、影响织物的物理特性、耐水洗性差 [64]
微胶囊
抑菌性较好、热稳定性较好 耐水洗性差 [65]
溶胶-凝
胶法
抑菌性好、改善织物的抗皱性能 对织物的服用性能有影响 [66]
化学接
枝法
抗菌性好、抗菌持久性强、整理后的织物的透气性和亲水性好 对接枝基团和纤维原料要求高、技术较复杂 [67]
[1] KURT B S, STEVEN G. Policy Implications of the society for healthcare epidemiology of america's research plan for reducing healthcare-associated infections[J]. Infection Control & Hospital Epidemiology, 2010, 31(2): 75-83.
[2] ODIYO J O, MAKUNGO R. Chemical and microbial quality of groundwater in siloam village, implications to human health and sources of contamination[J]. International Journal of Environmental Research & Public Health, 2018, 15(2): 317-322.
[3] 肖丽平, 李临生. 抗菌防腐剂:Ⅰ:抗菌防腐剂的历史、定义与分类[J]. 日用化学工业, 2001, 31(5): 55-57.
XIAO Liping, LI Linsheng. Antimicrobial preservatives:Ⅰ:history, definition and classification of antimicrobial preservatives[J]. Daily Chemical Industry, 2001, 31(5): 55-57.
[4] 严佳, 李刚. 医用纺织品的研究进展[J]. 纺织学报, 2020, 41(9): 191-200.
YAN Jia, LI Gang. Research progress of medical textiles[J]. Journal of Textile Research, 2020, 41(9): 191-200.
[5] WU Q, HE C, WANG X, et al. Sustainable antibacterial surgical suture using a facile scalable silk-fibroin-based berberine loading system[J]. ACS Biomaterials Science and Engineering, 2021(6):2845-2857.
[6] WANG X, LIU P, WU Q, et al. Sustainable antibacterial and anti-inflammatory silk suture with surface modification of combined-therapy drugs for surgical site infection[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11177-11191.
[7] 周轩榕, 卢滇楠, 邵曼君, 等. 表面接枝季铵盐型高分子材料抗菌过程的特性研究[J]. 高等学校化学学报, 2003, 24(6): 1131-1135.
ZHOU Xuanrong, LU Diannan, SHAO Manjun, et al. Study on the antibacterial process of surface grafted quaternary ammonium salt polymer materials[J]. Chemical Journals of Colleges and Universities, 2003, 24(6): 1131-1135.
[8] DOBRAWA K, YING-LIEN C, DARIA W. Biological activity of quaternary ammonium salts and their derivatives[J]. Pathogens, 2020, 9(6): 459-470.
doi: 10.3390/pathogens9060459
[9] BARZIC A I, IOAN S. Concepts, compounds and the alternatives of antibacterials[M]. Rijeka: IntechOpen, 2015: 3-28.
[10] RIBEIRO M, SIMOES L C, SIMOES M. Encyclopedia of microbiology[M]. 4th ed. New York: Academic Press, 2019: 478-490.
[11] JAF C, EVANGELISTA A G, NAZARETH T, et al. Fundamentals of the molecular mechanism of action of antimicrobial peptides[J]. Materialia, 2019. DOI: org/10.1016/j.mtla.2019.100494.
doi: org/10.1016/j.mtla.2019.100494
[12] CHAKRABORTY S P, PRAMANIK P, ROY S. A review on emergence of antibiotic resistant Staphylococcus aureus and role of chitosan nanoparticle in drug delivery[J]. International Journal of Life Science & Pharma Research, 2012, 2(1): 96-115.
[13] 姜亚洁, 鞠洪斌, 王亚魁, 等. 中国季铵盐消毒杀菌剂现状及发展方向[J]. 日用化学品科学, 2020, 43(3): 1-3.
JIANG Yajie, JU Hongbin, WANG Yakui, et al. Present situation and development direction of quaternary ammonium disinfectants in China[J]. Daily Chemical Science, 2020, 43(3):1-3.
[14] 海涵. 季铵盐抗菌剂在口腔材料中的应用现状与发展趋势概述[J]. 全科口腔医学电子杂志, 2019, 6(16): 7-9.
HAI Han. Application status and development trend of quaternary ammonium salt antimicrobial agents in oral materials[J]. Electronic Journal of General Stomatology, 2019, 6(16): 7-9.
[15] 张长荣, 金聪玲. 阳离子活性杀菌剂的合成进展及其结构与杀菌力的关系[J]. 陕西化工, 1997(3): 1-7.
ZHANG Changrong, JIN Congling. Progress in synthesis of cationic active fungicides and their relationship between structure and bactericidal power[J]. Shaanxi Chemical Industry, 1997(3): 1-7.
[16] AXEL K, THOMAS E, GERALD M, et al. Re-evaluation of polihexanide use in wound antisepsis in order to clarify ambiguities of two animal studies[J]. Journal of Wound Care, 2019, 28(4): 246-255.
doi: 10.12968/jowc.2019.28.4.246
[17] 李妮妮, 于文. 聚六亚甲基胍类消毒剂性能及应用研究进展[J]. 日用化学品科学, 2015, 38(9): 36-39.
LI Nini, YU Wen. Research progress on properties and application of polyhexamethylene guanidine disinfec-tants[J]. Daily Chemical Science, 2015, 38(9): 36-39.
[18] IKEDA T, LEDWITH A, BAMFORD C H, et al. Interaction of a polymeric biguanide biocide with phospholipid membranes[J]. BBA - Biomembranes, 1984, 769(1): 57-66.
doi: 10.1016/0005-2736(84)90009-9
[19] 闫华, 韩江升, 林煦, 等. 聚六亚甲基双胍盐酸盐的性能应用与合成进展[J]. 山东化工, 2017, 46(20): 47-48.
YAN Hua, HAN Jiangsheng, LIN Xu, et al. Progress in properties, application and synthesis of polyhexamethylene biguanidine hydrochloride[J]. Shandong Chemical Industry, 2017, 46(20): 47-48.
[20] HUI F, DEBIEMME-CHOUVY C. Antimicrobial N-halamine polymers and coatings: a review of their synthesis, characterization, and applications[J]. Macromolecules, 2013. 14(3): 585-601.
[21] 翟永筛. 卤胺聚合物的制备及在抗菌棉布中的应用研究[D]. 上海: 上海师范大学, 2017: 3-4.
ZHAI Yongshai. Preparation of halamine polymer and its application in antibacterial cotton[D]. Shanghai: Shanghai Normal University, 2017: 3-4.
[22] 翟丽莎, 王宗垒, 周敬伊, 等. 纺织用抗菌材料及其应用研究进展[J]. 纺织学报, 2021, 42(9): 170-179.
ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, et al. Research progress on antibacterial materials for textiles and their applications[J]. Journal of Textile Research, 2021, 42(9): 170-179.
[23] DONG A, WANG Y J, GAO Y, et al. Chemical insights into antibacterial N-Halamines[J]. Chemical Reviews, 2017, 117(6): 4806-4862.
doi: 10.1021/acs.chemrev.6b00687
[24] 宋登鹏, 周佳艳, 朱坤坤, 等. 纺织用抗菌整理剂的研究进展[J]. 西安工程大学学报, 2020, 34(2): 26-36.
SONG Dengpeng, ZHOU Jiayan, ZHU Kunkun, et al. Research progress of antibacterial finishing agent for textile[J]. Journal of Xi'an Engineering University, 2020, 34(2): 26-36.
[25] AKAMURA S, SATO M, SATO Y, et al. Synthesis and application of silver nanoparticles (Ag NPs) for the prevention of infection in healthcare workers[J]. International Journal of Molecular Sciences, 2019, 20(15): 3620-3637.
doi: 10.3390/ijms20153620
[26] CHERNOUSOVA S, EPPLE M. Silver as antibacterial agent: ion, nanoparticle, and metal[J]. Angewandte Chemie International Edition, 2013, 44(6): 1636-1653.
doi: 10.1002/anie.200462592
[27] YUAN G. Recent advances in antimicrobial treatments of textiles[J]. Textile Research Journal, 2008, 78(1): 60-72.
doi: 10.1177/0040517507082332
[28] ALADPOOSH R, MONTAZER M. The role of cellulosic chains of cotton in biosynthesis of ZnO nanorods producing multifunctional properties: mechanism, characterizations and features[J]. Carbohydrate Polymers, 2015, 126: 122-129.
doi: 10.1016/j.carbpol.2015.03.036
[29] FUNARI C S, FERRO O V. Análise de prÓpolis[J]. CiEncia E Tecnologia De Alimentos, 2006, 26(1): 171-178.
doi: 10.1590/S0101-20612006000100028
[30] SFORCIN J M, BANKOVA V. Propolis: is there a potential for the development of new drugs?[J]. Journal of Ethnopharmacology, 2011, 133(2): 253-260.
doi: 10.1016/j.jep.2010.10.032
[31] ZHANG L, ZHOU Y, WU Q, et al. A functional polyvinyl alcohol fibrous membrane loaded with artemisinin and chloroquine phosphate[J]. Journal of Polymer Research, 2021, 28(6): 232-241.
doi: 10.1007/s10965-021-02584-0
[32] UTAI K. The role of chitosan in emulsion formation and stabilization[J]. Food Reviews International, 2013, 29(4):371-393.
doi: 10.1080/87559129.2013.818013
[33] WORTHINGTON R J, MELANDER C. Combination approaches to combat multidrug-resistant bacteria[J]. Trends in Biotechnology, 2013, 31(3): 177-184.
doi: 10.1016/j.tibtech.2012.12.006
[34] 朱岳. 膨润土载纳米银抗菌剂的制备及性能研究[J]. 功能材料与器件学报, 2018, 24(1): 56-60.
ZHU Yue. Study on preparation and properties of nano-silver antibacterial agent carried by bentonite[J]. Journal of Functional Materials and Devices, 2018, 24(1): 56-60.
[35] LYU Y B, YU M C, LIU Q S, et al. Synthesis of silver nanoparticles using oxidized amylose and combination with curcumin for enhanced antibacterial activity[J]. Carbohydrate Polymers, 2020.DOI: org/10.1016/j.carbpol.2019.115573.
doi: org/10.1016/j.carbpol.2019.115573
[36] PADNYA P L, TERENTEVA O S, AKGMEDOV A A, et al. Thiacalixarene based quaternary ammonium salts as promising antibacterial agents[J]. Bioorganic & Medicinal Chemistry, 2021.DOI: org/10.1016/j. bmc.2020.115905.
doi: org/10.1016/j. bmc.2020.115905
[37] TEYMOURINIA H, AMIRI O, SALAVATI-NIASARI M. Synthesis and characterization of cotton-silver-graphene quantum dots (cotton/Ag/GQDs) nanocomposite as a new antibacterial nanopad[J]. Chemosphere, 2021.DOI: org/10.1016/j.chemosphere.2020.129293.
doi: org/10.1016/j.chemosphere.2020.129293
[38] YU H, MA Z, MENG S, et al. A novel nanohybrid antimicrobial based on chitosan nanoparticles and antimicrobial peptide microcin J25 with low toxicity[J]. Carbohydrate Polymers, 2021.DOI: org/10.1016/j.carbpol.2020.117309.
doi: org/10.1016/j.carbpol.2020.117309
[39] LIU M, GUO R, MA Y. Construction of a specific and efficient antibacterial agent against pseudomonas aeruginosa based on polyethyleneimine cross-linked fucose[J]. Journal of Materials Science, 2021, 56(10): 1-12.
[40] TIAN T F, SHI X Z, CHENG L, et al. Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8542-8548.
[41] 叶远丽, 李飞, 冯志忠, 等. 纺织品抗菌整理研究进展[J]. 服装学报, 2018, 3(1): 1-8.
YE Yuanli, LI Fei, FENG Zhizhong, et al. Research progress of antibacterial finishing of textiles[J]. Journal of Clothing, 2018, 3(1): 1-8.
[42] 郑皓, 徐少俊, 杨晓霞, 等. 抗菌防霉剂的研究进展及其在纺织品中的应用[J]. 纺织学报, 2011, 32(11): 153-162.
ZHENG Hao, XU Shaojun, YANG Xiaoxia, et al. Research progress of antibacterial and anti-mildew agent and its application in textiles[J]. Journal of Textile Research, 2011, 32(11): 153-162.
[43] YILMAZ F. Application of glycyrrhiza glabra L. root as a natural antibacterial agent in finishing of textile[J]. Industrial Crops and Products, 2020.DOI: org/10.1016/j.indcrop.2020.112899.
doi: org/10.1016/j.indcrop.2020.112899
[44] KARIMI L, YAZDANSHENAS M E, KHAJAVI R, et al. Using graphene/TiO2 nanocomposite as a new route for preparation of electroconductive, self-cleaning, antibacterial and antifungal cotton fabric without toxicity[J]. Cellulose, 2014, 21(5): 3813-3827.
doi: 10.1007/s10570-014-0385-1
[45] ZHANG G, WANG D, YAN J, et al. Study on the photocatalytic and antibacterial properties of TiO2 nanoparticles-coated cotton fabrics[J]. Materials, 2019, 12(12): 2010-2019.
doi: 10.3390/ma12122010
[46] LI H, ZHANG Y, LI H, et al. Preparation, characterization, antibacterial properties and hydrophobic evaluation of SiO2/Ag nanosol coated cotton/linen fabric[J]. Journal of The Textile Institute, 2019, 111(1): 75-83.
doi: 10.1080/00405000.2019.1682758
[47] RAUNAK S, KARTHIK S, KUMAR P, et al. Psidium guajava leaf extract-mediated synthesis of ZnO nanoparticles under different processing parameters for hydrophobic and antibacterial finishing over cotton fabrics[J]. Progress in Organic Coatings, 2018, 124: 80-91.
doi: 10.1016/j.porgcoat.2018.08.004
[48] XU L, ZHANG N, WANG Q, et al. Eco-friendly grafting of chitosan as a biopolymer onto wool fabrics using horseradish peroxidase[J]. Fibers and Polymers, 2019, 20(2): 261-270.
doi: 10.1007/s12221-019-8546-3
[49] ZHANG D S, CHEN L, ZANG C F, et al. Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability[J]. Carbohydrate Polymers, 2013, 92(2): 2088-2094.
doi: 10.1016/j.carbpol.2012.11.100
[50] 林全愧, 计剑, 谭庆刚, 等. 层层自组装技术在生物医用材料领域中的应用研究进展[J]. 高分子通报, 2006, 8: 58-63.
LIN Quankui, JI Jian, TAN Qinggang, et al. Application and research progress of layer-by-layer self-assembly technology in the field of biomedical materials[J]. Polymer Bulletin, 2006, 8: 58-63.
[51] GADKARI R R, ALI S W, JOSHI M, et al. Leveraging antibacterial efficacy of silver loaded chitosan nanoparticles on layer-by-layer self-assembled coated cotton fabric[J]. International Journal Mof Biological Macromolecules, 2020, 162: 548-560.
[52] MA X, DAI F F, LI H, et al. Chitosan/polydopamine layer by layer self-assembled silk fibroin nanofibers for biomedical applications[J]. Carbohydrate Polymers, 2021.DOI: org/10.1016/j.carbpol.2020.117058.
doi: org/10.1016/j.carbpol.2020.117058
[53] 新霞, 蒋芳, 黄继伟, 等. 茶叶提取物纳米银的制备及其对棉织物的抗菌整理[J]. 上海纺织科技, 2014, 42(5): 45-49.
XIN Xia, JIANG Fang, HUANG Jiwei, et al. Preparation of nano-silver from tea extract and its antibacterial finishing on cotton fabric[J]. Shanghai Textile Science and Technology, 2014, 42(5): 45-49.
[54] 黄小萃, 林红, 陈宇岳. 芦荟纳米银的制备及其对真丝织物的抗菌整理[J]. 丝绸, 2009(10): 26-29.
HUANG Xiaocui, LIN Hong, CHEN Yuyue. Preparation of aloe nano-silver and its antibacterial finishing of silk fabric[J]. Journal of Silk, 2009(10): 26-29.
[55] 张治斌, 李刚, 毛森贤, 等. 丝素蛋白/壳聚糖微球制备及其抗菌性能[J]. 纺织学报, 2019, 40(10): 7-12.
ZHANG Zhibin, LI Gang, MAO Senxian, et al. Preparation and antibacterial properties of silk fibroin/chitosan microspheres[J]. Journal of Textile Research, 2019, 40(10): 7-12.
[56] LIU J, LIU C, LIU Y, et al. Study on the grafting of chitosan-gelatin microcapsules onto cotton fabrics and its antibacterial effect[J]. Colloids & Surfaces B Biointerfaces, 2013, 109: 103-108.
[57] 高晶, 张俊, 赵泽阳, 等. 氧化石墨烯协同TiO2/SiO2改性涤/棉织物的抗菌持久性与服用性[J]. 纺织学报, 2019, 40(10): 120-126.
GAO Jing, ZHANG Jun, ZHAO Zeyang, et al. Antibacterial persistence and serviceability of graphene oxide combined with TiO2/SiO2 modified polyester/cotton fabric[J]. Journal of Textile Research, 2019, 40(10): 120-126.
[58] LPRP A, VU A, DG A, et al. Surface and photocatalytic properties of TiO2 thin films prepared by non-aqueous surfactant assisted sol-gel method[J]. Journal of Environmental Chemical Engineering, 2020.DOI: https://doi.org/10.1016/j.jece.2020.104267.
doi: https://doi.org/10.1016/j.jece.2020.104267
[59] 徐弘. 溶胶-凝胶法制备SiO2超亲水涂层的研究[D]. 哈尔滨: 哈尔滨工业大学, 2019: 37-82.
XU Hong. Study on the preparation of SiO2superhydrophilic coating by sol-gel method[D]. Harbin: Harbin Institute of Technology, 2019: 37-82.
[60] ROBERTO P, CLAUDIO C, ALFREDO C, et al. Innovative sol-gel route in neutral hydroalcoholic condition to obtain antibacterial cotton finishing by zinc precursor[J]. Journal of Sol-Gel Science and Technology, 2015, 74(1): 151-160.
doi: 10.1007/s10971-014-3589-9
[61] HAN H, LIU C, ZHU J, et al. Contact/release coordinated antibacterial cotton fabrics coated with n-halamine and cationic antibacterial agent for durable bacteria-killing application[J]. International Journal of Molecular Sciences, 2020, 21(18): 6531-6544.
doi: 10.3390/ijms21186531
[62] RAJABOOPATHI S, THAMBIDURAI S. Evaluation of UPF and antibacterial activity of cotton fabric coated with colloidal seaweed extract functionalized silver nanoparticles[J]. Journal of Photochemistry & Photobiology, B: Biology, 2018, 183: 75-81.
[63] WANG C, LV J, YU R, et al. Cotton fabric with plasma pretreatment and ZnO/Carboxymethyl chitosan composite finishing for durable UV resistance and antibacterial property[J]. Carbohydrate Polymers, 2016, 138: 106-113.
doi: 10.1016/j.carbpol.2015.11.046
[64] AUBERT-VIARD F, MOGROVEJO-VALDIVIA A, TABARY N, et al. Evaluation of antibacterial textile covered by layer-by-layer coating and loaded with chlorhexidine for wound dressing application[J]. Materials Science & Engineering C, 2019, 100: 554-563.
[65] ZHANG Z, ZHAO Z, ZHENG Z, et al. Functionalization of polyethylene terephthalate fabrics using nitrogen plasma and silk fibroin/chitosan microspheres[J]. Applied Surface Science, 2019. DOI: org/10.1016/j.apsusc.2019.07.223.
doi: org/10.1016/j.apsusc.2019.07.223
[66] ARIK B, ATMACA O. The effects of sol-gel coatings doped with zinc salts and zinc oxide nanopowders on multifunctional performance of linen fabric[J]. Cellulose, 2020, 27(14): 8385-8403.
doi: 10.1007/s10570-020-03322-3
[67] HE L, GAO C, LI S, et al. Non-leaching and durable antibacterial textiles finished with reactive zwitterionic sulfobetaine[J]. Journal of Industrial and Engineering Chemistry, 2017, 46: 373-378.
doi: 10.1016/j.jiec.2016.11.006
[68] WANG Y, DING X, CHEN Y, et al. Antibiotic-loaded, silver core-embedded mesoporous silica nanovehicles as a synergistic antibacterial agent for the treatment of drug-resistant infections[J]. Biomaterials, 2016, 101: 207-216.
doi: 10.1016/j.biomaterials.2016.06.004
[69] 黄显晔, 谢宇庭, 张鹏宇. 耐甲氧西林金黄色葡萄球菌研究进展[J]. 畜禽业, 2021, 32(1): 8-9.
HUANG Xianye, XIE Yuting, ZHANG Pengyu. Research progress of methicillin-resistant Staphylococcus aureus[J]. Livestock and Poultry Industry, 2021, 32(1): 8-9.
[70] 马维. 基于纳米ZnO/卤胺抗菌复合材料的构筑及应用研究[D]. 无锡: 江南大学, 2020: 60-86.
MA Wei. Construction and application of nano-ZnO/halamine antibacterial composites[D]. Wuxi: Jangnan University, 2020: 60-86.
[71] RAGHAVENDRA G M, JUNG J, KIM D, et al. Chitosan-mediated synthesis of flowery-CuO, and its antibacterial and catalytic properties[J]. Carbohydrate Polymers, 2017, 172: 72-84.
[1] JI Bolin, WANG Bijia, MAO Zhiping. Key technologies supporting low-carbon emissions in dyeing and finishing of textiles [J]. Journal of Textile Research, 2022, 43(01): 113-121.
[2] WANG Zhihui, XU Yufei, GUO Haoyu, ZHANG Kanglei, PANG Xingchen, NIE Xiaolin, ZHUGE Jian, WEI Qufu. Progress in application of photodynamic antibacterial technology for textiles [J]. Journal of Textile Research, 2021, 42(11): 187-196.
[3] WU Guoshan, LIU Heqing, WU Shixian, YOU Bo, SONG Xiaopeng. Cooling capacity of personal ventilation systems in different environments [J]. Journal of Textile Research, 2021, 42(10): 139-145.
[4] PAN Mengjiao, LU Yehu, WANG Min. Prediction of thermal comfort for bedding system based on four-node thermoregulation model [J]. Journal of Textile Research, 2021, 42(09): 150-155.
[5] ZHAI Lisha, WANG Zonglei, ZHOU Jingyi, GAO Chong, CHEN Fengxiang, XU Weilin. Research progress of antibacterial materials for textiles and their applications [J]. Journal of Textile Research, 2021, 42(09): 170-179.
[6] LIU Yang, XIA Zhaopeng, WANG Liang, FAN Jie, ZENG Qiang, LIU Yong. Development status and trend of antivirus medical protective clothing [J]. Journal of Textile Research, 2021, 42(09): 195-202.
[7] KE Ying, ZHANG Haitang, ZHU Xiaohan, WANG Hongfu, WANG Min. Development and performance evaluation of aloft cleaning working suit based on electrical heating [J]. Journal of Textile Research, 2021, 42(08): 149-155.
[8] ZHANG Chao, JIANG Zhiming, ZHU Shaotong, ZHANG Chenxi, ZHU Ping. Application of hyperbranched phosphoramide in flame retardant finishing of viscose fabrics [J]. Journal of Textile Research, 2021, 42(07): 39-45.
[9] ZHANG Jiaojiao, LI Yuyang, LIU Yun, DONG Chaohong, ZHU Ping. Flame retardant and antibacterial treatments for cotton-viscose blended fabrics [J]. Journal of Textile Research, 2021, 42(07): 31-38.
[10] NIU Mengyu, PAN Shuwen, DAI Hongqin, LÜ Kaimin. Relationship between thermal-moist comfort of medical protective clothing and human fatigue [J]. Journal of Textile Research, 2021, 42(07): 144-150.
[11] LUO Xiaolei, LI Ziyan, MA Ya'nan, LIU Lin, KRUCINSKA Izabella, YAO Juming. Progress in ecological flame retardant technology for textiles [J]. Journal of Textile Research, 2021, 42(05): 193-202.
[12] JIANG Yanting, YAN Qingshuai, XIN Binjie, GAO Cong, SHI Meiwu. Comparative study on testing methods for unidirectional water transport in fabrics [J]. Journal of Textile Research, 2021, 42(05): 51-58.
[13] WANG Li, ZHANG Bingjie, WANG Jianping, LIU Li, YANG Yalan, YAO Xiaofeng, LI Qianwen, LU You. Development and performance evaluation of bionic knitted winter sports fabrics [J]. Journal of Textile Research, 2021, 42(05): 66-72.
[14] ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109.
[15] YANG Yang, YU Xin, ZHANG Weijing, ZHANG Peihua. Evaluation method and prediction model establishment of cooling performance of knitted fabrics [J]. Journal of Textile Research, 2021, 42(03): 95-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!