Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (05): 193-202.doi: 10.13475/j.fzxb.20200803810

• Comprehensive Review • Previous Articles    

Progress in ecological flame retardant technology for textiles

LUO Xiaolei1, LI Ziyan2, MA Ya'nan2, LIU Lin2(), KRUCINSKA Izabella3, YAO Juming2   

  1. 1. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    3. Faculty of Material Technologies and Textile Design, Lodz University of Technology, Lodz 90-924, Poland
  • Received:2020-08-06 Revised:2021-01-16 Online:2021-05-15 Published:2021-05-20
  • Contact: LIU Lin E-mail:liulin@zstu.edu.cn

Abstract:

With the increasingly stringent environmental regulations worldwide and the progress of sustainable development, the ecologicalization of textile flame retardant technology is imminent, and the development and application of ecological flame retardant technology and environmentally friendly flame retardants are the key. In order to promote the development of ecological textile flame-retardant technology and flame-retardant textiles, the conventional flame-retardant performance construction methods and the ecological improvement research progress in the current textile processing and molding process are summarized based on the existing achievements.The review covers spinning, weaving and finishing. At the same time, the research and application progress of new ecological flame retardant finishing technology are described. Furthermore, the promising environmentally friendly flame retardant, biomass flame retardant, its types and the research progress in textile ecological flame retardant technology are introduced. Finally, it is pointed out that the key to promote its industrial application is to solve by interdisciplinary efforts the two bottleneck problems, i.e. operational complexity and high cost.

Key words: textile flame retardant technology, ecological flame retardant technology, biomass flame retardant, halogen-free flame retardant, functional textiles

CLC Number: 

  • TS195

Fig.1

Textile flame retardant technology"

Fig.2

Schematic diagram of flame retardant finishing process of dip-pad-curing method (a) and dip-dry method (b)"

Tab.1

Advantages and disadvantages of various flame retardant finishing processes and their research focus"

阻燃整理工艺 优点 缺点 参考文献
传统工艺 浸轧烘焙法 操作简单、灵活,普适性强,低成本 耐久性一般,影响面料手感,环保性差 [19]
浸渍烘燥法 [20]
涂布法 [21]
喷雾法 引发方式多样,耐久性佳 反应操控复杂,损伤织物 [23]
接枝法 [26-27]
新式工艺 溶胶-凝胶法 低温反应环境,阻燃层细腻,均匀性佳 反应时间长,成本高 [28]
层层组装法 受基材影响小,便于精确定制 工艺步骤多 [15、31]
微胶囊法 改善相容性,维持阻燃剂稳定性 壳层厚度难把控 [32]
等离子体法 节能节水,操作简单,界面结合强度高,面料损伤小 活化面积有限,设备要求高 [28、34]

Tab.2

Flame retardant mechanism and defects of environmentally friendly flame retardant"

阻燃剂 阻燃机制 缺陷 参考文献
硅系 界面绝缘屏障 阻燃效率差,相容性差 [15]
无机金属化合物 固相吸热,不燃气体稀释,产物作界面绝缘屏障 阻燃效率低,相容性差,或含重金属元素 [36]
炭系 界面绝缘屏障,部分能捕获自由基 阻燃效率差,成本高 [37]
生物质 作碳源以促进成炭,不燃气体气相稀释,捕获自由基 部分价格昂贵,热稳定性差 [38-40]

Fig.3

Biomass flame retardant in nature"

[1] 李曼. 高层建筑多因素作用下火灾发展机理和烟气控制研究[D]. 合肥: 中国科学技术大学, 2018: 1-9.
LI Man. Studies on mechanisms of fire development under multi-factors and smoke control method in high-rise building[D]. Hefei: University of Science and Technology of China, 2018: 1-9.
[2] MONICA G, ETTORE C, ELENI K, et al. Occurrence of halogenated and organophosphate flame retardants in sediment and fish samples from three European river basins[J]. Science of the Total Environment, 2017,586:782-791.
doi: 10.1016/j.scitotenv.2017.02.056
[3] GUO J H, MARTA V, AMINA S, et al. Bioaccumulation of dechloranes, organophosphate esters, and other flame retardants in geat lakes fish[J]. Science of the Total Environment, 2017,583:1-9.
doi: 10.1016/j.scitotenv.2016.11.063
[4] KATHERINE W G, KRISTEN L F, PAIGE M E, et al. Detrimental effects of flame retardant,PBB153, exposure on sperm and future generations[J/OL]. Science Reports, 2020,10: 8567. [2020-08-03]. https://doi.org/10.1038/s41598-020-65593-x.
[5] 丁辰. 表面接枝方法阻燃改性Lyocell纤维的研究[D]. 天津: 天津工业大学, 2019: 8-56.
DING Chen. Study on flame retardant modification of lyocell fiber by surface grafting[J]. Tianjin: Tiangong University, 2019: 8-56.
[6] 李振辉. 分子自组装制备阻燃粘胶纤维[D]. 太原: 中北大学, 2019: 16-59.
LI Zhenhui. Preparation of flame retardant viscose fiber by molecular self-assembly[D]. Taiyuan: North University of China, 2019: 16-59.
[7] 陈云博. 改性硅溶胶对蚕丝织物的阻燃整理[D]. 苏州: 苏州大学, 2018: 14-64.
CHEN Yunbo. Flame retardant finish of silk fabrics by modified silica sol[D]. Suzhou: Soochow University, 2018: 14-64.
[8] 沈德垚. 灭火战斗服的结构优化设计研究[D]. 石家庄: 河北科技大学, 2019: 7-38.
SHEN Deyao. Research on structural optimization design of fire fighting suits[J]. Shijiazhuang: Hebei University of Science & Technology, 2019: 7-38.
[9] 房家惠, 于伟东. 阻燃涤纶/芳纶/聚苯丙噁唑纤维三轴系复合纱的拉伸性能[J]. 纺织学报, 2017,38(6):28-32.
FANG Jiahui, YU Weidong. Mechanical analysis of flame retardant three-strand yarn of polyester/aramid fiber/poly (p-phenylene-2, 6-benzo-bisoxazole) fiber[J]. Journal of Textile Research, 2017,38(6):28-32.
[10] 周宏. 英国碳纤维技术早期发展史研究[J]. 合成纤维, 2017,46(5):15-21.
ZHOU Hong. The review of UK research history for high performance carbon fiber[J]. Synthetic Fiber in China, 2017,46(5):15-21.
[11] JIANG L, LI K, YANG H Y, et al. Improving mechanical properties of electrospun cellulose acetate nanofiber membranes by cellulose nanocrystals with and without polyvinylpyrrolidone[J]. Cellulose, 2020,27(2):955-967.
doi: 10.1007/s10570-019-02830-1
[12] SHI X H, XU Y J, LONG J W, et al. Layer-by-layer assembled flame-retardant architecture toward high performance carbon fiber composite[J]. Chemical Engineering Journal, 2018,353:550-558.
doi: 10.1016/j.cej.2018.07.146
[13] LIU B W, CHEN L, GUO D M, et al. Fire-safe polyesters enabled by end-group capturing chemistry[J]. Angewandte Chemie International Edition, 2019,58, 9188-9193.
doi: 10.1002/anie.v58.27
[14] JIANG L, LI K, YANG H Y, et al. Significantly improved flame-retardancy of cellulose acetate nanofiber by Mg-based nano flaky petal[D]. Cellulose, 2019,26(9):5211-5226.
doi: 10.1007/s10570-019-02451-8
[15] OLEKSANDR N, ROMAIN B, TONIAS K. Wet spinning of flame-retardant cellulosic fibers supported by interfacial complexation of cellulose nanofibrils with silica nanoparticles[J]. ACS Applied Materials & Interfaces, 2017,9:39069-39077.
[16] LV J C, DAI Y M, XU H, et al. Transforming commercial regenerated cellulose yarns into mu.pngunctional wearable electronic textiles[J]. Journal of Materials Chemistry C, 2020,8(4):1309-1318.
doi: 10.1039/C9TC05673D
[17] CHENG X W, TANG R C, GUAN J P, et al. An eco-friendly and effective flame retardant coating for cotton fabric based on phytic acid doped silica sol approach[J]. Progress in Organic Coatings, 2020,141:105539.
doi: 10.1016/j.porgcoat.2020.105539
[18] CHEN S S, LI X, LI Y, et al. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric[J]. ACS Nano, 2015,9(4):4070-4076.
doi: 10.1021/acsnano.5b00121
[19] LI P, WANG B, LIU Y Y, et al. Fully bio-based coating from chitosan and phytate for fire-safety and antibacterial cotton fabrics[J]. Carbohydrate Polymers, 2020,237:116-173.
[20] 单思佳. 涤与棉混纺织物阻燃性能研究[D]. 上海: 东华大学, 2018: 7-32.
SHAN Sijia. Study on flame retardancy of polyester and cotton blended fabric[D]. Shanghai: Donghua University, 2018: 7-32.
[21] DING F C, LIU J J, ZENG S S, et al. Biomimetic nanocoatings with exceptional mechanical, barrier, flame-retardant properties from large-scale one-step coassembly[J/OL]. Science Advances, 2017, 3: 1701212. [2020-08-03]. https://pubmed.ncbi.nlm.nih.gov/28776038/.
[22] FU T, ZHAO X, CHEN L, et al. Bioinspired color changing molecular sensor toward early fire detection based on transformation of phthalonitrile to phthalocyanine[J/OL]. Advance Functional Materials, 2019, 29: 1806586[2020-08-03]. https://doi.org/10.1002/adfm.201806586.
[23] XIE H L, LAI X J, LI H Q, et al. A sandwich-like flame retardant nanocoating for supersensitive fire-warning[J/OL]. Chemical Engineering Journal, 2020, 382: 122929. [2020-08-03]. https://doi.org/10.1016/j.cej.2019.122929.
[24] XU Q B, SHEN L W, DUAN P P, et al. Superhydrophobic cotton fabric with excellent healability fabricated by the "grafting to" method using a diblock copolymer mist[J/OL]. Chemical Engineering Journal, 2020, 379: 122401. [2020-08-03]. https://sci-hub.tw/10.1016/j.cej.2019.122401.
[25] HAJJ R, EL H R, SONNIER R, et al. Influence of lignocellulosic substrate and phosphorus flame retardant type on grafting yield and flame retardancy[J/OL]. Reactive & Functional Polymers, 2020, 153.[2020-04-23]. https://doi.org/10.1016/j.reactfunctpolym.2020.104612.
[26] XU L J, WEI W, YU D. Preparation of a reactive flame retardant and its finishing on cotton fabrics based on click chemistry[J/OL]. RSC Advances, 2017, 7: 2044.[2020-08-03]. https://pubs.rsc.org/en/content/articlehtml/2017/RA/C6RA26075F.
[27] LING C, GUO L M. Preparation of a flame-retardant coating based on solvent-free synthesis with high efficiency and durability on cotton fabric[J/OL]. Carbohydrate Polymers, 2020, 230: 115648. [2020-08-03]. https://sci-hub.tw/10.1016/j.carbpol.2019.115648.
[28] LIN D M, ZENG X R, LI H Q, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019,533:198-206.
doi: 10.1016/j.jcis.2018.08.060
[29] 李静, 陈华钢. 溶胶-凝胶涂覆棉织物的制备及其阻燃性[J]. 印染助剂, 2020,37(10):18-21.
LI Jing, CHEN Huagang. Preparation and flame retardant properties of cotton fabric coated with sol-gel[J]. Textile Auxiliaries, 2020,37(10):18-21.
[30] 刘龙翔. 阻燃与超疏水涤棉织物的制备及其性能研究[D]. 合肥: 中国科学技术大学, 2019: 15-49.
LIU Longxiang. Study on preparation and performance of flame-retardant and superhydrophobic polyester-cotton fabric[D]. Hefei: University of Science and Technology of China, 2019: 15-49.
[31] ZENG F X, QIN Z Y, LI T, et al. Boosting phosphorus-nitrogen-silicon synergism through introducing graphene nanobrick wall structure for fabricating mu.pngunctional cotton fabric by spray assisted layer-by-layer assembly[J]. Cellulose, 2020,27(11):6691-6705.
doi: 10.1007/s10570-020-03235-1
[32] 杨雅茹. 双壳型微胶囊碳微球对PET及其纤维的阻燃改性和阻燃机理研究[D]. 太原: 太原理工大学, 2019: 19-156.
YANG Yaru. Study on double-shell microcapsuled carbon microsphere for the flame retardant modification of PET and polyester fiber and its flame retardant mechanism[D]. Taiyuan: Taiyuan University of Technology, 2019: 19-156.
[33] 刘菲, 李秋瑾, 巩继贤, 等. 层层自组装多糖微胶囊的制备及其缓释型纯棉织物修饰应用[J]. 纺织学报, 2019,40(2):114-118.
LIU Fei, LI Qiujin, GONG Jixian, et al. Polysaccharide microcapsules via layer-by-layer assembly for cotton fabric as sustained release vessl[J]. Journal of Textile Research, 2019,40(2):114-118.
[34] HUONG Nguyen Thi, KHANH Vu Thi Hong, THANH Ngo Ha, et al. Application of plasma activation in flame-retardant treatment for cotton fabric[J/OL]. Polymers, 2020,12: 1575.[2020-08-03]. https://sci-hub.tw/10.3390/polym12071575.
[35] 董培梅. 聚合物纤维织物的Ag/TiO2纳米材料整理及其多功能应用研究[D]. 杭州: 浙江大学, 2019: 13-44.
DONG Peimei. Study on mu.pngunctional applications of Ag/TiO2 nanomaterials finished polymer fabrics[D]. Hangzhou: Zhejiang University, 2019: 13-14.
[36] PENG H Y, ZHANG L P, LI M, et al. Interfacial growth of 2D bimetallic metal-organic frameworks on MoS2 nanosheet for reinforcements of polyacrylonitrile fiber: From efficient flameretardant fiber to recyclable photothermal materials [J/OL]. Chemical Engineering Journal, 2020, 397: 125410. [2020-08-03]. https://doi.org/10.1016/j.cej.2020.125410.
[37] DATTATRAY A P, RAHUL V K, PRAVIN H, Wadekar, et al, Novel approach toward the synjournal of a phosphorusfunctionalized polymer-based graphene composite as an efficient flame retardant[J]. ACS Sustainable Chemistry & Engineering, 2019,7:11745-11753.
[38] 李俊. 丙烯酸接枝阻燃纤维素纤维织物的制备及性能研究[D]. 哈尔滨: 东北林业大学, 2018: 9-38.
LI Jun. Study on the preparation and properties of acrylic acid grafted flame retardant cellulose fiber fabric[D]. Haerbin: Northeast Forestry University, 2018: 9-38.
[39] GUILIO M. Biomacromolecules and bio-sourced products for the design of flame retarded fabrics: current state of the art and future perspectives[J/OL]. Molecules, 2019, 24: 3774. [2020-08-03]. https://sci-hub.tw/10.3390/molecules24203774 .
[40] ZHOU Q Q, WU W, SHAO S Q, et al. Polydopamine-induced growth of mineralized r-FeOOH nanorods for construction of silk fabric with excellent superhydrophobicity, flame retardancy and UV resistance[J/OL]. Chemical Engineering Journal, 2020,382: 1988. [2020-08-03]. https://sci-hub.tw/10.1016/j.cej.2019.122988.
[41] WANG B, LI P, XU Y J, et al. Bio-based, nontoxic and flame-retardant cotton/alginate blended fibres as filling materials: thermal degradation properties, flammability and flame-retardant mechanism[J/OL]. Composites Part B, 2020, 194: 108038. [2020-08-03]. https://sci-hub.tw/10.1016/j.compositesb.2020.108038.
[42] PAN Y, WANG W, PAN H F, et al. Fabrication of montmorillonite and titanate nanotube based coatings via layer-by-layer self assembly method to enhance the thermal stability, flame retardancy and ultraviolet protection of polyethylene terephthalate (PET) fabric[J]. RSC Advances, 2016,6:53625-53634.
doi: 10.1039/C6RA05213D
[43] ZHENG Z H, LIU Y H, DAI B Y, et al. Fabrication of cellulose-based halogen-free flame retardant and its synergistic effect with expandable graphite in polypropylene[J]. Carbohydrate Polymers, 2019,213:257-265.
doi: 10.1016/j.carbpol.2019.02.088
[44] 刘放. 过氧化氢氧化制备羧基淀粉和亚麻纤维及其对环氧树脂阻燃行为的研究[D]. 广州: 华南理工大学, 2016: 14-60.
LIU Fang. The preparation of carboxyl starch and carboxyl linen by hydrogen peroxide and their application in flame retardance of epoxy resin[D]. Guanzhou: South China University of Technology, 2016: 14-60.
[46] LIU X H, ZHANG Q Y, PENG B, et al. Flame retardant cellulosic fabrics via layer-by-layer self-assembly double coating with egg white protein and phytic acid[J/OL]. Journal of Cleaner Production, 2020, 243: 118641. [2020-08-03]. https://sci-hub.tw/10.1016/j.jclepro.2019.118641.
[47] JUNG D, ILENIA P, DEBES B. Synergistic effects of feather fibers and phosphorus compound on chemically modified chicken feather/polypropylene composites[J]. ACS Sustainable Chemistry & Engineering, 2019,7:19072-19080.
[48] XU F, ZHONG L, XU Y, et al. Synjournal of three novel amino acids-based flame retardants with multiple reactive groups for cotton fabrics[J]. Cellulose, 2019,26:7537-7552.
doi: 10.1007/s10570-019-02599-3
[49] JENNY A, RICCARDO A C, ALESSANDRO D B, et al. Intrinsic intumescent-like flame retardant properties of DNA-treated cotton fabrics[J]. Carbohydrate Polymers, 2013,96:296-304.
doi: 10.1016/j.carbpol.2013.03.066
[50] SIMONA O, GIULIO M, MAGDA B, et al. NanoTiO2@DNA complex: a novel eco, durable, fire retardant design strategy for cotton textiles[J]. Journal of Colloid and Interface Science, 2019,546:174-183.
doi: 10.1016/j.jcis.2019.03.055
[51] THIRUMALAISAMY S, MATHUR G S. Fabrication of a superhydrophobic and flame-retardant cotton fabric using a DNA-based coating[J]. Journal of Materials Science, 2020,55:11959-11969.
doi: 10.1007/s10853-020-04911-0
[52] CHENG X W, LIANG C X, GUAN J P, et al. Flame retardant and hydrophobic properties of novel sol-gel derived phytic acid/silica hybrid organic-inorganic coatings for silk fabric[J]. Applied Surface Science, 2018,427:69-80.
doi: 10.1016/j.apsusc.2017.08.021
[53] ZHANG X B, ZHOU X Y, CHENG X W, et al. Phytic acid as an eco-friendly flame retardant for silk/wool blend: a comparative study with fluorotitanate and fluorozirconate[J]. Journal of Cleaner Production, 2018,198:1044-1052.
doi: 10.1016/j.jclepro.2018.07.103
[54] CHENG X W, GUAN J P, YANG X H, et al. Phytic acid/silica organic-inorganic hybrid sol system: a novel and durable flame retardant approach for wool fabric[J]. Journal of Materials Research and Technology, 2020,9(1):700-708.
doi: 10.1016/j.jmrt.2019.11.011
[55] LI S S, LIN X H, LIU Y, et al. Phosphorus-nitrogen-silicon-based assembly multilayer coating for the preparation of flame retardant and antimicrobial cotton fabric[J/OL]. Cellulose, 2019,26(6): 4213-4223. [2020-08-03]. https://sci-hub.tw/10.1007/s10570-019-02373-5.
[56] ZHANG W, YANG Z Y, TANG R C, et al. Application of tannic acid and ferrous ion complex as eco-friendly flame retardant and antibacterial agents for silk[J/OL]. Journal of Cleaner Production 2020, 250: 119545. [2020-08-03]. https://sci-hub.tw/10.1016/j.jclepro.2019.119545.
[57] CHENG T H, LIU Z J, YANG J Y, et al. Extraction of functional dyes from tea stem waste in alkaline medium and their application for simultaneous coloration and flame retardant and bioactive functionalization of silk[J]. ACS Sustainable Chemistry & Engineering, 2019,7:18405-18413.
[58] GUO L, YANG Z Y, TANG R C, et al. Grape seed proanthocyanidins: novel coloring, flame-retardant, and antibacterial agents for silk[J]. ACS Sustainable Chemiistry & Engineering, 2020,8:5966-5974.
[1] ZHANG Chentian, ZHAO Lianying, GU Xuefeng. Wearability of hollow coffee carbon polyester/cotton blended weft plain knitted fabric [J]. Journal of Textile Research, 2021, 42(03): 102-109.
[2] ZHOU Yingyu, WANG Rui, JIN Gaoling, WANG Wenqing. Research progress of applications of photo-induced surface modification technique in flame retardant fabrics [J]. Journal of Textile Research, 2021, 42(03): 181-189.
[3] DING Zihan, QIU Hua. Preparation and performance of nano-silica modified water-based polyurethane waterproof and moisture-permeable coated fabrics [J]. Journal of Textile Research, 2021, 42(03): 130-135.
[4] MA Ya'nan, SHEN Junyan, LUO Xiaolei, ZHANG Cong, SHANG Xiaolei, LIU Lin, KRUCINSKA Izabella, YAO Juming. Preparation and properties of high efficiency halogen-free flame-retardant cotton fabrics [J]. Journal of Textile Research, 2021, 42(03): 122-129.
[5] MENG Lingling, WEI Qufu, YAN Zhongjie, ZHONG Zhenzhen, WANG Xiaohui, SHEN Jiayu, CHEN Hongwei. Preparation and properties of Ag/ZnO composite film deposited polyester fabrics by magnetron sputtering [J]. Journal of Textile Research, 2021, 42(03): 143-148.
[6] YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns [J]. Journal of Textile Research, 2021, 42(01): 1-9.
[7] YANG Yaru, SHEN Xiaojun, TANG Bolin, NIU Mei. Halogen-free flame retardant finishing of ultra-high molecular weight polyethylene fiber [J]. Journal of Textile Research, 2020, 41(11): 109-115.
[8] ZHANG Yanyan, ZHAN Luyao, WANG Pei, GENG Junzhao, FU Feiya, LIU Xiangdong. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 174-180.
[9] CHEN Wendou, ZHANG Hui, CHEN Tianyu, WU Hailiang. Self-cleaning properties of titanium dioxide modified polyester/cotton blend fabrics [J]. Journal of Textile Research, 2020, 41(07): 122-128.
[10] CHANG Shuo, SHEN Jiajia. Research progress of graphene durable finishing of textiles [J]. Journal of Textile Research, 2020, 41(02): 179-186.
[11] XU Lin, REN Yu, ZHANG Hongyang, WU Shuangquan, LI Ya, DING Zhirong, JIANG Wenwen, XU Sijun, ZANG Chuanfeng. Construction and properties of superhydrophobic layer of titania/fluorosilane on polyester fabric surface [J]. Journal of Textile Research, 2019, 40(12): 86-92.
[12] REN Yuanlin, JIANG Li'na, HUO Tongguo, TIAN Tian. Research progress on flame retardant modification of polyacrylonitrile fiber [J]. Journal of Textile Research, 2019, 40(08): 181-188.
[13] REN Yuanlin, JIANG Li'na, HUO Tongguo, TIAN Tian. Research progress of halogen-free flame retardancy and smoke suppression of polyacrylonitrile [J]. Journal of Textile Research, 2019, 40(07): 182-188.
[14] ZHANG Anying, WANG Zhaoying, WANG Rui, DONG Zhenfeng, WEI Lifei, WANG Deyi. Preparation and structural properties of flame retardant poly(L-lactic acid) and fiber thereof [J]. Journal of Textile Research, 2019, 40(04): 7-14.
[15] LI Qianglin, HUANG Fangqian, XIAO Xiuchan, QIU Cheng, WU Juzhen. Review on novel halogen-free polymer flame retardants [J]. Journal of Textile Research, 2019, 40(04): 177-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!