Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (05): 116-124.doi: 10.13475/j.fzxb.20240700101
• Fiber Materials • Previous Articles Next Articles
LI Pengfei1, LUO Yixin1, ZHANG Zifan1, LU Ning1, CHEN Biling1, XU Jianmei1,2(
)
CLC Number:
| [1] | NUZULIA N A, MART T, AHMED I, et al. The use of microspheres for cancer embolization therapy: recent advancements and prospective[J]. ACS Biomaterials Science & Engineering, 2024, 10: 637-656. |
| [2] |
LIU K L, JIN Z C, HU X L, et al. A biodegradable multifunctional porous microsphere composed of carrageenan for promoting imageable trans-arterial chemoembolization[J]. International Journal of Biological Macromolecules, 2020, 142: 866-878.
doi: S0141-8130(19)35185-2 pmid: 31622716 |
| [3] | FUCHS K, DURAN R, DENYS A, et al. Drug-eluting embolic microspheres for local drug delivery-state of the art[J]. Journal of Controlled Release, 2017, 262: 127-138. |
| [4] |
POURSAID A, JENSEN M M, HUO E, et al. Polymeric materials for embolic and chemoembolic applications[J]. Journal of Controlled Release, 2016, 240: 414-433.
doi: S0168-3659(16)30096-7 pmid: 26924353 |
| [5] | HAN S, ZHANG X, LI M. Progress in research and application of PLGA embolic microspheres[J]. Frontiers in Bioscience-Landmark, 2016, 21: 931-940. |
| [6] | MOSCHOVAKI-ZEIGER O, ARKOUDIS N A, GIANNAKIS A, et al. Biodegradable microspheres for transarterial chemoembolization in malignant liver disease[J]. Medicina, 2024. DOI: 10.3390/medicina60040678. |
| [7] | KUNDU B, KURLAND N E, BANO S, et al. Silk proteins for biomedical applications: bioengineering perspectives[J]. Progress in Polymer Science, 2014, 39(2): 251-267. |
| [8] | HONG H, LEE O J, LEE Y J, et al. Cytocompatibility of modified silk fibroin with glycidyl methacrylate for tissue engineering and biomedical applications[J]. Biomolecules, 2020. DOI: 10.3390/biom11010035. |
| [9] | NOSRATI Z, LI N, MICHAUD F, et al. Development of a coflowing device for the size-controlled preparation of magnetic-polymeric microspheres as embolization agents in magnetic resonance navigation technology[J]. ACS Biomaterials Science & Engineering, 2018, 4(3): 1092-1102. |
| [10] |
ZHANG X H, BAUGHMAN C B, KAPLAN D L. In vitro evaluation of electrospun silk fibroin scaffolds for vascular cell growth[J]. Biomaterials, 2008, 29(14): 2217-2227.
doi: 10.1016/j.biomaterials.2008.01.022 pmid: 18279952 |
| [11] | LEE H S, KIM E H, SHAO H P, et al. Synthesis of SPIO-chitosan microspheres for MRI-detectable embolotherapy[J]. Journal of Magnetism and Magnetic Materials, 2005, 293(1): 102-105. |
| [12] |
张子凡, 李鹏飞, 王建南, 等. 丝素蛋白载药纳米粒的研究进展[J]. 纺织学报, 2023, 44(10): 205-213.
doi: 10.13475/j.fzxb.20220607102 |
|
ZHANG Zifan, LI Pengfei, WANG Jiannan, et al. Research progress in silk fibroin drug-loaded nanoparticles[J]. Journal of Textile Research, 2023, 44(10): 205-213.
doi: 10.13475/j.fzxb.20220607102 |
|
| [13] |
ZHAO Z, LI Y, XIE M B. Silk fibroin-based nanoparticles for drug delivery[J]. International Journal of Molecular Sciences, 2015, 16(3): 4880-4903.
doi: 10.3390/ijms16034880 pmid: 25749470 |
| [14] | QIU W, PATIL A, HU F, et al. Hierarchical structure of silk materials versus mechanical performance and mesoscopic engineering principles[J]. Small, 2019. DOI: 10.1002/smll.201903948. |
| [15] | HU J, ALBADAWI H, ZHANG Z, et al. Silk embolic material for catheter-directed endovascular drug deliv-ery[J]. Advanced Materials, 2021. DOI: 1002/adma.202106865. |
| [16] |
LIU Q, LIU H F, FAN Y B. Preparation of silk fibroin carriers for controlled release[J]. Microscopy Research and Technique, 2017, 80(3): 312-320.
doi: 10.1002/jemt.22606 pmid: 26638113 |
| [17] | 王刚, 李晓萍, 王进. 植入壳聚糖体内降解的机理研究[J]. 当代医学, 2015, 21(34): 5-8. |
| WANG Gang, LI Xiaoping, WANG Jin. Mechanism study of degradation in chitosan implanted[J]. Contemporary Medicine, 2015, 21(34): 5-8. | |
| [18] | DOUCET J, KIRI L, O'CONNELL K, et al. Advances in degradable embolic microspheres: a state of the art review[J]. Journal of Functional Biomaterials, 2018. DOI: 10.1016/j.jconrel.2017.07.016. |
| [19] | GAO F, RAFIQ M, CONG H, et al. Current research status and development prospects of embolic microspheres containing biological macromolecules and others[J]. International Journal of Biological Macromolecules, 2024. DOI: 10.1016/j.ijbiomac.2024.131494. |
| [20] |
CHEN G, WEI R, HUANG X, et al. Synthesis and assessment of sodium alginate-modified silk fibroin microspheres as potential hepatic arterial embolization agent[J]. International Journal of Biological Macromolecules, 2020, 155: 1450-1459.
doi: S0141-8130(19)36999-5 pmid: 31734365 |
| [21] |
ZHOU X, KONG M, CHENG X J, et al. In vitro and in vivo evaluation of chitosan microspheres with different deacetylation degree as potential embolic agent[J]. Carbohydrate Polymers, 2014, 113: 304-313.
doi: 10.1016/j.carbpol.2014.06.080 pmid: 25256489 |
| [22] |
KWAK B K, SHIM H J, HAN S M, et al. Chitin-based embolic materials in the renal artery of rabbits: pathologic evaluation of an absorbable particulate agent[J]. Radiology, 2005, 236(1): 151-158.
pmid: 15987971 |
| [23] |
李枫, 杨嘉豪, 赖耿昌, 等. 高分子聚合物栓塞微球的研究进展[J]. 纺织学报, 2021, 42(10): 180-189.
doi: 10.13475/j.fzxb.20200702810 |
|
LI Feng, YANG Jiahao, LAI Gengchang, et al. Research progress of polymer embolic microspheres[J]. Journal of Textile Research, 2021, 42(10): 180-189.
doi: 10.13475/j.fzxb.20200702810 |
|
| [24] | YANG S H, JU X J, DENG C F, et al. In vitro study on effects of physico-chemo-mechanical properties of embolic microspheres on embolization performances[J]. Industrial & Engineering Chemistry Research, 2023, 62: 2636-2648. |
| [25] | JIA G, VAN VALKENBURGH J, CHEN A Z, et al. Recent advances and applications of microspheres and nanoparticles in transarterial chemoembolization for hepatocellular carcinoma[J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, 2021. DOI: 10.1002/wnan.1749. |
| [26] |
VAIDYA S, TOZER K, CHEN J. An overview of embolic agents[J]. Seminars in Interventional Radiology, 2008, 25(3): 204-215.
doi: 10.1055/s-0028-1085930 pmid: 21326511 |
| [27] | CHEN C, HUANG X, WANG F, et al. Preparation of a modified silk-based gel/microsphere composite as a potential hepatic arterial embolization agent[J]. Biomaterials Advances, 2023. DOI: 10.1016/j.bioadv.2023.213559. |
| [1] | DONG Zijing, WU Xinyuan, WANG Ruixia, ZHAO Huaxiang, QIAN Lijiang, YING Chengwei, SUN Runjun. Preparation and application of chitosan-modified conductive fabrics in human posture monitoring [J]. Journal of Textile Research, 2025, 46(04): 146-153. |
| [2] | CAO Zhanrui, JI Cancan, HE Shanshan, ZHOU Feng, XIANG Yang, GAO Fei, LIU Ke, WANG Dong. Preparation and bovine serum albumin separation of ethylene vinyl alcohol copolymer nanofibrous anion-exchange aerogel [J]. Journal of Textile Research, 2025, 46(04): 29-37. |
| [3] | LUO Xin, WANG Lei, WANG Xiaoyou, WU Tao, ZHANG Zhenzhen, ZHANG Yifan. Advances in self-assembly mechanism of hierarchical structures and their reconstructed materials [J]. Journal of Textile Research, 2025, 46(03): 225-235. |
| [4] | ZHAN Kejing, YANG Xin, ZHANG Yinglong, ZHANG Xin, PAN Zhijuan. Fabrication and mechanical reinforcement of self-coagulated regenerated silk fibroin micro-nanofiber membranes [J]. Journal of Textile Research, 2025, 46(02): 10-19. |
| [5] | YANG Xin, ZHANG Xin, PAN Zhijuan. Structure and properties of fibroin nanofibril reinforced regenerated silk protein/polyvinyl alcohol fiber [J]. Journal of Textile Research, 2024, 45(11): 1-9. |
| [6] | LI Meng, DAI Mengnan, YU Yangxiao, WANG Jiannan. Research progress in application of silk fibroin-based biomaterials for bone repair [J]. Journal of Textile Research, 2024, 45(10): 224-231. |
| [7] | FANG Lei, LIU Xiuming, JIA Jiaojiao, LIN Zhihao, REN Yanfei, HOU Kaiwen, GONG Jixian, HU Yanling. Fabrication of high molecular weight chitosan core-shell nanofibers [J]. Journal of Textile Research, 2024, 45(09): 1-9. |
| [8] | WANG Boxiang, XU Hangdan, LI Jia, LIN Jie, CHENG Dehong, LU Yanhua. Preparation and biocompatibility of temperature-sensitive composite membrane of tussah silk fibroin nanofiber [J]. Journal of Textile Research, 2024, 45(09): 18-25. |
| [9] | LÜ Zihao, XU Huihui, YUAN Xiaohong, WANG Qingqing, WEI Qufu. Preparation and properties of photodynamic antimicrobial spunlaced cotton made by integrated dyeing and finishing [J]. Journal of Textile Research, 2024, 45(08): 26-34. |
| [10] | WU Yuhang, WEI Jianfei, GU Weiwen, WANG Yuping, ZHANG Anying, WANG Rui. Preparation and properties of flame retardant modified polyethylene terephthalate by in-situ polymerization [J]. Journal of Textile Research, 2024, 45(06): 1-10. |
| [11] | FENG Ying, YU Hanzhe, ZHANG Hong, LI Kexin, MA Biao, DONG Xin, ZHANG Jianwei. Review on preparation of electrospun chitosan-based nanofibers and their application in water treatment [J]. Journal of Textile Research, 2024, 45(05): 218-227. |
| [12] | CHEN Jinmiao, LI Jiwei, CHEN Meng, NING Xin, CUI Aihua, WANG Na. Preparation and properties of chitosan micro-nanofiber composite antibacterial air filter material [J]. Journal of Textile Research, 2024, 45(05): 19-26. |
| [13] | HU Ziqiang, LUO Xiaolei, WEI Lulin, LIU Lin. Synergistic flame retardant finishing of polyester/cotton blended fabric with phytic acid/chitosan [J]. Journal of Textile Research, 2024, 45(04): 126-135. |
| [14] | LI Lili, YUAN Liang, TANG Yuxia, YANG Wenju, WANG Hao. Tea pigment dyeing of cotton fabric modified with polydopamine/chitosan and its antibacterial and anti-ultraviolet properties [J]. Journal of Textile Research, 2024, 45(03): 106-113. |
| [15] | LI Manli, JI Zhihao, LONG Zhu, WANG Yifeng, JIN Enqi. Preparation and application properties of chitosan fluorescent anti-counterfeiting printing coating [J]. Journal of Textile Research, 2024, 45(03): 114-121. |
|
||