Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (12): 29-38.doi: 10.13475/j.fzxb.20250304502
• Academic Salon Column for New Insight of Textile Science and Technology: Fiber-based Functional Filtration Materials • Previous Articles Next Articles
CLC Number:
| [1] |
DENG W, SUN Y J, YAO X X, et al. Masks for COVID-19[J]. Advanced Science, 2022, 9(3): 2102189.
doi: 10.1002/advs.v9.3 |
| [2] |
PRATA J C, SILVA A L P, WALKER T R, et al. COVID-19 pandemic repercussions on the use and management of plastics[J]. Environmental Science & Technology, 2020, 54(13): 7760-7765.
doi: 10.1021/acs.est.0c02178 |
| [3] |
DENG Y K, LU T, CUI J X, et al. Bio-based electrospun nanofiber as building blocks for a novel eco-friendly air filtration membrane: a review[J]. Separation and Purification Technology, 2021, 277: 119623.
doi: 10.1016/j.seppur.2021.119623 |
| [4] |
BHATTACHARJEE S, BAHL P, AHMAD CHUGHTAI A, et al. Face masks and respirators: towards sustainable materials and technologies to overcome the shortcomings and challenges[J]. Nano Select, 2022, 3(10): 1355-1381.
doi: 10.1002/nano.v3.10 |
| [5] |
OLIVEIRA A M, PATRÍCIO SILVA A L, SOARES A M V M, et al. Current knowledge on the presence, biodegradation, and toxicity of discarded face masks in the environment[J]. Journal of Environmental Chemical Engineering, 2023, 11(2): 109308.
doi: 10.1016/j.jece.2023.109308 |
| [6] |
ZHAO X, GAO P P, ZHAO Z Q, et al. Microplastics release from face masks: characteristics, influential factors, and potential risks[J]. Science of The Total Environment, 2024, 921: 171090.
doi: 10.1016/j.scitotenv.2024.171090 |
| [7] |
ATHUKORALALAGE S S A, BELL C A, GEMMELL A C, et al. Recent advances and future perspectives in engineering biodegradable face masks[J]. Journal of Materials Chemistry A, 2023, 11(4): 1575-1592.
doi: 10.1039/D2TA08019B |
| [8] |
王珅, 刘宣伯, 张艳芳, 等. 生物可降解无纺布材料研究进展[J]. 中国塑料, 2024, 38(7): 86.
doi: 10.19491/j.issn.1001-9278.2024.07.015 |
|
WANG Shen, LIU Xuanbo, ZHANG Yanfang, et al. Research progress in biodegradable nonwoven mate-rials[J]. China Plastics, 2024, 38(7): 86.
doi: 10.19491/j.issn.1001-9278.2024.07.015 |
|
| [9] |
GOUGH C R, CALLAWAY K, SPENCER E, et al. Biopolymer-based filtration materials[J]. ACS Omega, 2021, 6(18): 11804-11812.
doi: 10.1021/acsomega.1c00791 pmid: 34056334 |
| [10] |
LAMBERT S, WAGNER M. Environmental performance of bio-based and biodegradable plastics: the road ahead[J]. Chemical Society Reviews, 2017, 46(22): 6855-6871.
doi: 10.1039/c7cs00149e pmid: 28932844 |
| [11] |
SHARMA V, SEHGAL R, GUPTA R. Polyhydroxyalkanoate (PHA): properties and modifications[J]. Polymer, 2021, 212: 123161.
doi: 10.1016/j.polymer.2020.123161 |
| [12] |
JAFARI M, SHIM E, JOIJODE A. Fabrication of poly(lactic acid) filter media via the meltblowing process and their filtration performances: a comparative study with polypropylene meltblown[J]. Separation and Purification Technology, 2021, 260: 118185.
doi: 10.1016/j.seppur.2020.118185 |
| [13] |
YANG Y D, ZHANG M, JU Z X, et al. Poly(lactic acid) fibers, yarns and fabrics: manufacturing, properties and applications[J]. Textile Research Journal, 2021, 91(13/14): 1641-1669.
doi: 10.1177/0040517520984101 |
| [14] |
LIU S, QIN S H, HE M, et al. Current applications of poly(lactic acid) composites in tissue engineering and drug delivery[J]. Composites Part B: Engineering, 2020, 199: 108238.
doi: 10.1016/j.compositesb.2020.108238 |
| [15] | 朱斐超, 张宇静, 张强, 等. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(1): 49-57. |
| ZHU Feichao, ZHANG Feichao, ZHANG Qiang, et al. Research progress and prospect on biodegradable polylactic acid-based melt-blown nonwovens[J]. Journal of Textile Research, 2022, 43(1): 49-57. | |
| [16] |
RODCHANASURIPRON W, SEADAN M, SUTTIRUENGWONG S. Properties of non-woven polylactic acid fibers prepared by the rotational jet spinning method[J]. Materials Today Sustainability, 2020, 10: 100046.
doi: 10.1016/j.mtsust.2020.100046 |
| [17] |
邹晓月, 徐佳慧, 陈振树, 等. 口罩过滤材料及其驻极技术的研究进展[J]. 中国塑料, 2024, 38(9): 47.
doi: 10.19491/j.issn.1001-9278.2024.09.009 |
|
ZOU Xiaoyue, XU Jiahui, CHEN Zhenshu, et al. Research progress in mask filter materials and their electret technology[J]. China Plastics, 2024, 38(9): 47.
doi: 10.19491/j.issn.1001-9278.2024.09.009 |
|
| [18] |
SHEKHAR N, MONDAL A. Synthesis, properties, environmental degradation, processing, and applications of polylactic acid (PLA): an overview[J]. Polymer Bulletin, 2024, 81(13): 11421-11457.
doi: 10.1007/s00289-024-05252-7 |
| [19] |
王镕琛, 张恒, 孙焕惟, 等. 医疗卫生用聚乳酸非织造材料的制备及其亲水改性研究进展[J]. 中国塑料, 2022, 36(5): 158.
doi: 10.19491/j.issn.1001-9278.2022.05.025 |
|
WANG Rongchen, ZHANG Heng, SUN Huanwei, et al. Research progress in preparation and hydrophilic modification of polylactic acid nonwovens for medical and health applications[J]. China Plastics, 2022, 36(5): 158.
doi: 10.19491/j.issn.1001-9278.2022.05.025 |
|
| [20] |
CHEN M X, HU Q, WANG X Y, et al. A review on recent trends of the antibacterial nonwovens air filter materials: classification, fabrication, and applica-tion[J]. Separation and Purification Technology, 2024, 330: 125404.
doi: 10.1016/j.seppur.2023.125404 |
| [21] |
YU J M, XU S C, LIU B, et al. PLA bioplastic production: from monomer to the polymer[J]. European Polymer Journal, 2023, 193: 112076.
doi: 10.1016/j.eurpolymj.2023.112076 |
| [22] |
MICHELL R M, LADELTA V, DA SILVA E, et al. Poly(lactic acid) stereo complexes based molecular architectures: synthesis and crystallization[J]. Progress in Polymer Science, 2023, 146: 101742.
doi: 10.1016/j.progpolymsci.2023.101742 |
| [23] |
MA B M, WANG X L, HE Y, et al. Effect of poly(lactic acid) crystallization on its mechanical and heat resistance performances[J]. Polymer, 2021, 212: 123280.
doi: 10.1016/j.polymer.2020.123280 |
| [24] |
NASER A Z, DEIAB I, DARRAS B M. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review[J]. RSC Advances, 2021, 11(28): 17151-17196.
doi: 10.1039/d1ra02390j pmid: 35479695 |
| [25] |
TAIB N A B, RAHMAN M R, HUDA D, et al. A review on poly lactic acid (PLA) as a biodegradable polymer[J]. Polymer Bulletin, 2023, 80(2): 1179-1213.
doi: 10.1007/s00289-022-04160-y |
| [26] |
KRAJOVIC D M, KUMLER M S, HILLMYER M A. PLA block polymers: versatile materials for a sustainable future[J]. Biomacromolecules, 2025, 26(5): 2761-2783.
doi: 10.1021/acs.biomac.5c00161 pmid: 40193281 |
| [27] | 杨鑫, 李茹, 邢倩云, 等. 低温等离子体对聚乳酸的表面改性及其应用[J]. 高分子通报, 2022, 35(10): 16-26. |
| YANG Xin, LI Ru, XING Qianyun, et al. Surface modification of poly(lactic acid) by low temperature plasma and its application[J]. Polymer Bulletin, 2022, 35(10): 16-26. | |
| [28] |
STEFANIAK K, MASEK A. Green copolymers based on poly(lactic acid):short review[J]. Materials, 2021, 14(18): 5254.
doi: 10.3390/ma14185254 |
| [29] |
TRIPATHI N, MISRA M, MOHANTY A K. Durable polylactic acid (PLA)-based sustainable engineered blends and biocomposites: recent developments, challenges, and opportunities[J]. ACS Engineering Au, 2021, 1(1): 7-38.
doi: 10.1021/acsengineeringau.1c00011 |
| [30] |
ZHANG Z M, JIANG P P, LIU D K, et al. Research progress of novel bio-based plasticizers and their applications in poly(vinyl chloride)[J]. Journal of Materials Science, 2021, 56(17): 10155-10182.
doi: 10.1007/s10853-021-05934-x |
| [31] | 唐志强, 赵麟, 刘艳霞, 等. 新型环境友好绿色增塑剂的分子设计[J]. 科学通报, 2022, 67(24): 2835-2847. |
| TANG Zhiqiang, ZHAO Lin, LIU Yanxia, et al. Molecular design of environmental friendly green plasticizers[J]. Chinese Science Bulletin, 2022, 67(24): 2835-2847. | |
| [32] |
SHAHDAN D, ROSLI N A, CHEN R S, et al. Strategies for strengthening toughened poly(lactic acid) blend via natural reinforcement with enhanced biodegradability: a review[J]. International Journal of Biological Macromolecules, 2023, 251: 126214.
doi: 10.1016/j.ijbiomac.2023.126214 |
| [33] |
ZHAO X P, HU H, WANG X, et al. Super tough poly(lactic acid) blends: a comprehensive review[J]. RSC Advances, 2020, 10(22): 13316-13368.
doi: 10.1039/d0ra01801e pmid: 35492128 |
| [34] | 彭少贤, 蔡小琳, 胡欢, 等. 环境友好型增塑剂增韧聚乳酸的最新研究进展[J]. 材料导报, 2019, 33(8): 2617-2623. |
| PENG Shaoxian, CAI Xiaolin, HU Huan, et al. Latest research progress in polylactic acid toughened by environmental friendly plasticizer[J]. Materials Reports, 2019, 33(8): 2617-2623. | |
| [35] |
MAZIDI M M, AREZOUMAND S, ZARE L. Research progress in fully biorenewable tough blends of polylactide and green plasticizers[J]. International Journal of Biological Macromolecules, 2024, 279: 135345.
doi: 10.1016/j.ijbiomac.2024.135345 |
| [36] |
BARLETTA M, AVERSA C, AYYOOB M, et al. Poly(butylene succinate) (PBS): materials, processing, and industrial applications[J]. Progress in Polymer Science, 2022, 132: 101579.
doi: 10.1016/j.progpolymsci.2022.101579 |
| [37] |
HASSAN E A, ELARABI S E, WEI Y, et al. Biodegradable poly (lactic acid)/poly (butylene succinate) fibers with high elongation for health care products[J]. Textile Research Journal, 2018, 88(15): 1735-1744.
doi: 10.1177/0040517517708538 |
| [38] |
MENG L, CHEN M J, SUN X X, et al. Tailoring the microstructure of biodegradable PLA/PBS melt-blown nonwovens with enhanced mechanical performance by in situ PBS fibrils formation[J]. Industrial & Engineering Chemistry Research, 2024, 63(29): 13016-13024.
doi: 10.1021/acs.iecr.4c00591 |
| [39] |
FERNÁNDEZ-TENA A, PÉREZ-CAMARGO R A, COULEMBIER O, et al. Effect of molecular weight on the crystallization and melt memory of poly(ε-caprolactone) (PCL)[J]. Macromolecules, 2023, 56(12): 4602-4620.
doi: 10.1021/acs.macromol.3c00234 |
| [40] | SHARMA D, SATAPATHY B K. Optimization and physical performance evaluation of electrospun nanofibrous mats of PLA, PCL and their blends[J]. Journal of Industrial Textiles, 2022, 51(4_suppl): 6640-6665. |
| [41] |
VAN DE VOORDE K M, POKORSKI J K, KORLEY L T J. Exploring morphological effects on the mechanics of blended poly(lactic acid)/poly(ε-caprolactone) extruded fibers fabricated using multilayer coextru-sion[J]. Macromolecules, 2020, 53(13): 5047-5055.
doi: 10.1021/acs.macromol.0c00289 |
| [42] |
HUANG Y, BRÜNIG H, BOLDT R, et al. Fabrication of melt-spun fibers from irradiation modified biocompatible PLA/PCL blends[J]. European Polymer Journal, 2022, 162: 110895.
doi: 10.1016/j.eurpolymj.2021.110895 |
| [43] |
DE SOUZA F M, GUPTA R K. Exploring the potential of bio-plasticizers: functions, advantages, and challenges in polymer science[J]. Journal of Polymers and the Environment, 2024, 32(11): 5499-5515.
doi: 10.1007/s10924-024-03353-y |
| [44] |
BOCQUE M, VOIRIN C, LAPINTE V, et al. Petro-based and bio-based plasticizers: chemical structures to plasticizing properties[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2016, 54(1): 11-33.
doi: 10.1002/pola.v54.1 |
| [45] |
MONNIER X, DELPOUVE N, BASSON N, et al. Molecular dynamics in electrospun amorphous plasticized polylactide fibers[J]. Polymer, 2015, 73: 68-78.
doi: 10.1016/j.polymer.2015.07.047 |
| [46] |
ARRIETA M P, LÓPEZ J, LÓPEZ D, et al. Biodegradable electrospun bionanocomposite fibers based on plasticized PLA-PHB blends reinforced with cellulose nanocrystals[J]. Industrial Crops and Products, 2016, 93: 290-301.
doi: 10.1016/j.indcrop.2015.12.058 |
| [47] | SUN Y F, ECKSTEIN S, NIU X Y, et al. Biobased triesters as plasticizers for improved mechanical and biodegradable performance of polylactic acid fibrous membranes as facemask materials[J]. ACS Sustainable Chemistry & Engineering, 2024, 12(20): 7964-7975. |
| [48] |
BEN Z Y, SAMSUDIN H, YHAYA M F. Glycerol: its properties, polymer synthesis, and applications in starch based films[J]. European Polymer Journal, 2022, 175: 111377.
doi: 10.1016/j.eurpolymj.2022.111377 |
| [49] |
SUN Y F, SUN G. A natural butter glyceride as a plasticizer for improving thermal, mechanical, and biodegradable properties of poly(lactide acid)[J]. International Journal of Biological Macromolecules, 2024, 263: 130366.
doi: 10.1016/j.ijbiomac.2024.130366 |
| [50] |
OLKHOV A, ALEXEEVA O, KONSTANTINOVA M, et al. Effect of glycero-(9, 10-trioxolane)-trialeate on the physicochemical properties of non-woven polylactic acid fiber materials[J]. Polymers, 2021, 13(15): 2517.
doi: 10.3390/polym13152517 |
| [51] |
ZAABA N F, JAAFAR M. A review on degradation mechanisms of polylactic acid: hydrolytic, photodegradative, microbial, and enzymatic degrada-tion[J]. Polymer Engineering & Science, 2020, 60(9): 2061-2075.
doi: 10.1002/pen.v60.9 |
| [52] |
KIM M S, CHANG H, ZHENG L, et al. A review of biodegradable plastics: chemistry, applications, properties, and future research needs[J]. Chemical Reviews, 2023, 123(16): 9915-9939.
doi: 10.1021/acs.chemrev.2c00876 pmid: 37470246 |
| [53] | CHAMAS A, MOON H, ZHENG J J, et al. Degradation rates of plastics in the environment[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(9): 3494-3511. |
| [54] |
ROSLI N A, KARAMANLIOGLU M, KARGARZADEH H, et al. Comprehensive exploration of natural degradation of poly(lactic acid) blends in various degradation media: a review[J]. International Journal of Biological Macromolecules, 2021, 187: 732-741.
doi: 10.1016/j.ijbiomac.2021.07.196 pmid: 34358596 |
| [55] | MOMENI S, CRAPLEWE K, SAFDER M, et al. Accelerating the biodegradation of poly(lactic acid) through the inclusion of plant fibers: a review of recent advances[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(42): 15146-15170. |
| [56] |
WU J H, HU T G, WANG H, et al. Electrospinning of PLA nanofibers: recent advances and its potential application for food packaging[J]. Journal of Agricultural and Food Chemistry, 2022, 70(27): 8207-8221.
doi: 10.1021/acs.jafc.2c02611 |
| [57] | KANIUK Ł, STACHEWICZ U. Development and advantages of biodegradable PHA polymers based on electrospun PHBV fibers for tissue engineering and other biomedical applications[J]. ACS Biomaterials Science & Engineering, 2021, 7(12): 5339-5362. |
| [58] |
ACHARJEE S A, GOGOI B, BHARALI P, et al. Recent trends in the development of Polyhydroxyalkanoates (PHAs) based biocomposites by blending with different bio-based polymers[J]. Journal of polymer Research, 2024, 31(4): 98.
doi: 10.1007/s10965-024-03947-z |
| [59] |
LIU G H, GUAN J, WANG X F, et al. Large-scale preparation of mechanically high-performance and biodegradable PLA/PHBV melt-blown nonwovens with nanofibers[J]. Engineering, 2024, 39: 244-252.
doi: 10.1016/j.eng.2023.02.021 |
| [60] |
LO J S C, CHEN X, CHEN S R, et al. Fabrication of biodegradable PLA-PHBV medical textiles via electrospinning for healthcare apparel and personal protective equipment[J]. Sustainable Chemistry and Pharmacy, 2024, 39: 101536.
doi: 10.1016/j.scp.2024.101536 |
| [61] |
ARRIETA M P, PERDIGUERO M, FIORI S, et al. Biodegradable electrospun PLA-PHB fibers plasticized with oligomeric lactic acid[J]. Polymer Degradation and Stability, 2020, 179: 109226.
doi: 10.1016/j.polymdegradstab.2020.109226 |
| [62] |
HAMAD K, KASEEM M, AYYOOB M, et al. Polylactic acid blends: the future of green, light and tough[J]. Progress in Polymer Science, 2018, 85: 83-127.
doi: 10.1016/j.progpolymsci.2018.07.001 |
| [63] |
SUN S Y, WENG Y X, ZHANG C L. Recent advancements in bio-based plasticizers for polylactic acid(PLA): a review[J]. Polymer Testing, 2024, 140: 108603.
doi: 10.1016/j.polymertesting.2024.108603 |
| [1] | LI Zongjie, LI Tengfei, LU Yihan, KANG Weimin. Research progress in coupled electrospinning of multifunctional and multilevel structured nanofiber filtration materials [J]. Journal of Textile Research, 2025, 46(12): 19-28. |
| [2] | LIU Lin, XIA Feifei, XU Xiaoyu, ZHAO Liutao, YE Xiangyu, YU Senlong, SHAO Yu, WU Yue, ZHANG Xinghong, ZHU Feichao. Research progress in biodegradable polymer nonwoven materials and standard system [J]. Journal of Textile Research, 2025, 46(10): 237-246. |
| [3] | ZHANG Xinyu, JIN Xiaopei, ZHU Jintang, CUI Huashuai, WU Pengfei, CUI Ning, SHI Xianning. Improvement of thermal dimensional stability properties of polylactic acid meltblown nonwovens [J]. Journal of Textile Research, 2025, 46(08): 127-135. |
| [4] | CHEN Zhanyu, YU Senlong, ZHOU Jialiang, ZHU Liping, ZHOU Zhe, XIANG Hengxue, ZHU Meifang. Preparation of polylactic acid fabrics modified with phosphonic acid and their properties [J]. Journal of Textile Research, 2025, 46(08): 154-163. |
| [5] | TAN Wenping, ZHANG Shuo, ZHANG Qian, ZHANG Yin, LIU Runzheng, HUANG Xiaowei, MING Jinfa. Preparation and radiation refrigeration properties of polylactic acid fiber aerogel [J]. Journal of Textile Research, 2025, 46(06): 63-72. |
| [6] | SHI Xiaocong, CHEN Li, DU Xun. Preparation of alizarin-polylactic acid/collagen nanofiber membrane and its ammonia detection performance [J]. Journal of Textile Research, 2025, 46(05): 143-150. |
| [7] | ZHANG Huiqin, WU Gaihong, LIU Xia, LIU Shuqiang, ZHAO Heng, LIU Tao. Development and performance evaluation of biodegradable polylactic acid protective masks [J]. Journal of Textile Research, 2025, 46(03): 116-122. |
| [8] | QIAO Sijie, XING Tonghe, TONG Aixin, SHI Zhicheng, PAN Heng, LIU Keshuai, YU Hao, CHEN Fengxiang. Comparison of properties of different polylactic acid materials [J]. Journal of Textile Research, 2025, 46(03): 27-33. |
| [9] | ZHAO Ke, ZHANG Heng, CHENG Wensheng, ZHEN Qi, BU Qingyun, CUI Jingqiang. Melt-blown process and structural characterization of bio-typha polylactic acid medical protective materials [J]. Journal of Textile Research, 2025, 46(02): 51-60. |
| [10] | ZUO Hongmei, GAO Min, RUAN Fangtao, ZOU Lihua, XU Zhenzhen. Preparation and mechanical properties of MXene-graphene oxide modified carbon fiber/polylactic acid composites [J]. Journal of Textile Research, 2025, 46(01): 9-15. |
| [11] | LIU Xia, WU Gaihong, YAN Zihao, WANG Cailiu. Preparation and properties of intelligent phase change thermoregulated polylactic acid fiber membrane [J]. Journal of Textile Research, 2024, 45(12): 18-24. |
| [12] | OU Zongquan, YU Jinchao, PAN Zhijuan. Spinning of photochromic polylactic acid/polyhydroxybutyrate blend fiber and its structure and properties [J]. Journal of Textile Research, 2024, 45(12): 9-17. |
| [13] | LIU Jiawei, JI Dongxiao, QIN Xiaohong. Research progress in electrospun nanofiber materials for air filtration [J]. Journal of Textile Research, 2024, 45(08): 35-43. |
| [14] | CHEN Jinmiao, LI Jiwei, CHEN Meng, NING Xin, CUI Aihua, WANG Na. Preparation and properties of chitosan micro-nanofiber composite antibacterial air filter material [J]. Journal of Textile Research, 2024, 45(05): 19-26. |
| [15] | ZHAI Qian, ZHANG Heng, ZHAO Ke, ZHU Wenhui, ZHEN Qi, CUI Jingqiang. Laminated design and water quick-drying performance of biomimetic bamboo-tube fibrous humidifying materials [J]. Journal of Textile Research, 2024, 45(02): 1-10. |
|
||