Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (06): 38-43.doi: 10.13475/j.fzxb.20180704006

• Textile Engineering • Previous Articles     Next Articles

Numerical simulation of heat transfer of carbon fiber fabric under impact of heat flux

ZHENG Zhenrong1,2(), ZHI Wei1, HAN Chenchen1, ZHAO Xiaoming1, PEI Xiaoyuan1   

  1. 1. School of Textile Science and Engieering, Tianjin Polytechnic University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composites of Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China
  • Received:2018-07-16 Revised:2019-03-11 Online:2019-06-15 Published:2019-06-25

Abstract:

In order to study the heat transfer performance of textile materials under the impact of convective heat flux, taking the carbon fiber plain weave fabric as an example, the geometric parameters of yarn, the weaving path and cross-section shape of warp and weft yarns were obtained by scanning electron microscopy. Then a 3-D structural model of carbon fiber fabric was established. Based on the basic equation of heat transfer, the temperature variation curve in the direction of fabric thickness was solved numerically by finite element method. The results show that the heat transfer numerical model can be adopted to predict the temperature of the fabric back changing with time. It is found by experiments that the variation trend of fabric back temperature obtained with the numerical model is correlated with the experimental results. When heat flux is 1 319 W/m2 and 1 103 W/m2, respectively, the average relative errors of simulated and experimental values of fabric back temperature are 6.64% and 3.28%. It is indicated that the numerical model can better reflect the dynamic heat transfer process of carbon fiber fabric, which can provide an effective theoretical reference for the development of heat protective fabrics under high heat flux in the future.

Key words: carbon fiber fabric, heat transfer, 3-D geometric model, numerical simulation, heat flux density

CLC Number: 

  • TS101.3

Fig.1

Carbon fiber fabric. (a)SEM of fabric;(b)Geometry model of fabric; (c) SEM and geometry model of warp cross-section;(d) SEM and geometry model of weft yarn cross-section"

Fig.2

Principle of heat transfer with carban fiber fabric under heat flux"

Tab.1

Thermophysical parameters of materials"

材料 质量密度/
(kg·m-3)
导热系数/
(W·m-1·K-1)
定压比热容/
(J·kg-1·K-1)
空气 1.06 0.029 1 005
碳纤纱 1 798.90 0.528 1 318

Fig.3

Meshed of carbon fiber fabric model. (a)Fabric mesh model;(b)Air domain mesh"

Fig.4

Convective load"

Fig.5

Radiation load"

Fig.6

Schematic diagram of verified experiment"

Fig.7

Temperature distribution in thickness direction of fabric model"

Fig.8

Yarn temperature distribution in fabric model"

Fig.9

Temperature distribution on back of fabric"

[1] SHA X G, CHEN X, JI F, et al. Study on correlation of aerodynamic heating data of a combination model[J]. Procedia Engineering, 2015,99:1604-1609.
[2] SIDDIQUI M O R, SUN D. Finite element analysis of thermal conductivity and thermal resistance behaviour of woven fabric[J]. Computational Materials Science, 2013,75(12):45-51.
[3] KAMRAN D. Thermal analysis and design of multi-Layer insulation for re-entry aerodynamic heating[J]. Journal of Spacecraft and Rockets, 2002,39(4):509-514.
[4] JI T, ZHANG R, SUNDEN B, et al. Investigation on thermal performance of high temperature multilayer insulations for hypersonic vehicles under aerodynamic heating condition[J]. Applied Thermal Engineering, 2014,70(1):957-965.
[5] 樊钰, 叶定友, 杨月诚. 复合材料壳体气动加热温度场研究[J]. 固体火箭技术, 2013,36(3):381-384.
FAN Yu, YE Dingyou, YANG Yuecheng. Research on the temperature field of composite material case with aerodynamic heating[J]. Journal of Solid Rocket Technology, 2013,36(3):381-384.
[6] 李旭东, 张鹏, 尚明友, 等. 基于金星探测机械展开式进入飞行器技术述评[J]. 航天返回与遥感, 2015,36(2):1-8.
LI Xudong, ZHANG Peng, SHANG Mingyou, et al. Review of venus explorer mission using mechanically-deployed entry decelerator[J]. Spacecraft Recovery and Remote Sensing, 2015,36(2):1-8.
[7] AHMED Ghazy. Numerical study of air gap between fire-protective clothing and the skin[J]. Journal of Industrial Textiles, 2014,44(2):257-274.
[8] ZHAO Y X, SHI L M, LI Y L. Carbon fiber application analysis in the apparel field[J]. Advanced Materials Research, 2013, 734-737:2470-2474.
[9] 郭文文, 彭董挹海, 黄小双, 等. 碳纤维织物力学性能和冲压成形实验研究[J]. 材料科学与工艺, 2017,25(3):41-45.
GUO Wenwen, PENG Dongyihai, HUANG Xiaoshuang, et al. Experimental study on the mechanical properties and stamping forming of a carbon woven fabric[J]. Materials Science & Technology, 2017,25(3):41-45.
[10] 郑少明. 纱线横截面切片方法的研究[J]. 中国纤检, 2013(21):64-65.
ZHENG Shaoming. Study on the sectioning methods of yarn cross-section[J]. China Fiber Inspection, 2013(21):64-65.
[11] LIN H, BROWN L P, LONG A C. Modelling and simulating textile structures using TexGen[J]. Advanced Materials Research, 2011,331:44-47.
[12] 蔡雨, 郑天勇, 景书娟, 等. Peirce平纹机织物结构模型的计算精确度[J]. 纺织学报, 2012,33(1):48-53.
CAI Yu, ZHENG Tianyong, JING Shujuan, et al. Calculation accuracy of Peirce's plain woven fabric model for geometric struture of plain woven fabric[J]. Journal of Textile Research, 2012,33(1):48-53.
[13] 杨世铭, 陶文铨. 传热学[M]. 3版:北京:高等教育出版社, 1998: 25-28.
YANG Shiming, TAO Wenquan. Heat Transfer[M]. 3rd ed. Beijing: Higher Education Press, 1998: 25-28.
[14] 刘彦丰, 高正阳, 梁秀俊. 传热学[M]. 北京: 中国电力出版社, 2015: 38-39.
LIU Yanfeng, GAO Zhengyang, LIANG Xiujun. Heat Transfer[M]. Beijing: China Power Press, 2015: 38-39.
[15] MISRA R, BANSALl V, AGRAWAL G D, et al. Transient analysis based determination of derating factor for earth air tunnel heat exchanger in winter[J]. Energy & Buildings, 2013,58(2):76-85.
[16] DIXIT A, MISRA R K, MALI H S. Finite element compression modelling of 2×2 twill woven fabric textile composite[J]. Procedia Materials Science, 2014,6:1143-1149.
[17] 张文欢, 钱晓明, 师云龙, 等. 服装局部热阻与总热阻的动静态关系及其模型[J]. 纺织学报, 2018,139(7):111-115.
ZHANG Wenhuan, QIAN Xiaoming, SHI Yunlong, et al. Relationship between static and dynamic thermal insulation of local or whole body and its model[J]. Journal of Textile Research, 2018,139(7):111-115.
[18] 谢光银. 机织物设计基础学[M]. 上海: 东华大学出版社, 2010: 21-23.
XIE Guangyin. Design Foundation of Woven Fabric[M]. Shanghai: Donghua University Press, 2010: 21-23.
[19] 秦强, 任青梅, 王琦, 等. 气动压力对柔性热防护结构隔热性能的影响[J]. 宇航材料工艺, 2010,40(5):81-83.
QIN Qiang, REN Qingmei, WANG Qi, et al. Analysis of influence of aerodynamic pressure on properties of flexible thermal protection structure insulation[J]. Aerospace Materials & Technology, 2010,40(5):81-83.
[1] CHU Xi, QIU Hua. Flow simulations of ring swirl nozzle under different inlet pressure conditions [J]. Journal of Textile Research, 2020, 41(09): 33-38.
[2] DAI Xin, LI Jing, CHEN Chen. Finite element simulation on wear resistance of copper-plated carbon fiber tows [J]. Journal of Textile Research, 2020, 41(06): 27-35.
[3] DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state [J]. Journal of Textile Research, 2020, 41(01): 139-144.
[4] LI Sihu, SHEN Min, BAI Cong, CHEN Liang. Influence of structure parameter of auxiliary nozzle in air-jet loom on characteristics of flow field [J]. Journal of Textile Research, 2019, 40(11): 161-167.
[5] CHEN Xu, WU Bingyang, FAN Ying, YANG Musheng. Numerical simulation of low temperature protection process for heat storage fabrics [J]. Journal of Textile Research, 2019, 40(07): 163-168.
[6] . Numerical simulation of side compressive properties on glass fiber / epoxy resin sandwich composite [J]. Journal of Textile Research, 2019, 40(05): 59-63.
[7] . Three-dimensional numerical simulation of fiber movement in nozzle of murata vortex spinning [J]. Journal of Textile Research, 2019, 40(05): 131-135.
[8] . Analysis on airflow field in extended nozzle of air jet loom [J]. Journal of Textile Research, 2019, 40(04): 135-139.
[9] . Simulation on tensile mechanical properties of three-elementary weave woven fabrics based on ABAQUS [J]. Journal of Textile Research, 2019, 40(04): 44-50.
[10] . Numerical simulation of airflow field in vortex spinning process [J]. Journal of Textile Research, 2019, 40(03): 160-167.
[11] . Heat transfer property of capric acid-palmitic acid-stearic acid / polyacrylonitrile / boron nitride composite phase change fibrous membranes#br# [J]. Journal of Textile Research, 2019, 40(03): 26-31.
[12] . Comparative analysis of rotor spinning machines and yarn performance between conventional and dual-feed rotor spinning#br# [J]. Journal of Textile Research, 2019, 40(02): 63-68.
[13] CHEN Yue, ZHAO Yonghuan, CHU Zhudan, ZHUANG Zhishan, QIU Linlin, DU Pingfan. Research progress of flexible lithium battery electrodes based on carbon fibers and their fabrics [J]. Journal of Textile Research, 2019, 40(02): 173-180.
[14] . Numerical simulation for twisting chamber of air jet vortex spinning based on hollow spindle with spiral guiding grooves [J]. Journal of Textile Research, 2018, 39(09): 139-145.
[15] . Comprehensive performance of auxiliary nozzle of air-jet loom based on Fluent [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(08): 124-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!