Journal of Textile Research ›› 2019, Vol. 40 ›› Issue (03): 160-167.doi: 10.13475/j.fzxb.20180304708

• Management & Information • Previous Articles     Next Articles

Numerical simulation of airflow field in vortex spinning process

SHANG Shanshan1,2,3, YU Chongwen1,2, YANG Jianping1,2(), QIAN Xixi1,2   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    3. Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2018-03-21 Revised:2018-12-13 Online:2019-03-15 Published:2019-03-15
  • Contact: YANG Jianping E-mail:jpyang@dhu.edu.cn

Abstract:

In order to explicit the discipline of airflow generation and development in yarn formation process under the action of high speed airflow and overcome shortcomings in the current research, three-dimensional numerical simulation of the airflow characteristics during the whole vortex spinning process, including the initial state of yarn drawing-in process and the normal stable process, were obtained and analyzed. Spinning experiments, with the aid of scanning electron microscope, were adopted to verify the results of the numerical simulation. The results show that the state of airflow field is steady, which has less turbulence phenomenon at the beginning of the process, the air streamlines move orderly, the negative pressure produces a strong suction force facilitating drawing fiber bundle into nozzle successfully, and the numerical simulation speculates that the fibers cluster is better, and the wrapped effect is worse, which is consistent with the spinning experiments. The turbulence phenomenon in normal spinning process is more obvious, the trajectory of airflow is complex, the vortex and reflux phenomenon appear, the upstream airflow provides an extra tension for the yarn and may improve yarn strength, the numerical simulation speculates the fiber wrapped effect is better, and the yarn tenacity is predicted higher in numerical simulation results and verified by the spinning experiment results.

Key words: vortex spinning, spinning process, airflow field, numerical simulation

CLC Number: 

  • TS101.2

Fig.1

Three-dimensional computational model of airflow field inside the nozzle"

Fig.2

Computational grid of nozzle. (a) Whole nozzle grid; (b) Grid refinement of twisting chamber and hierarchical grid of boundary layer and narrow place; (c) Refinement of jet orifice grid of vortex tube; (d) Refinement and optimization of jet orifice grid of doffing tube"

Fig.3

Vortex yarn forming mechanism"

Fig.4

Airflow field simulation results of initial state of vortex spinning process. (a) View of velocity volume rendering; (b) View of turbulent kinetic energy volume rendering;(c)View of velocity vector;(d) Streamline diagram of nozzle inlet; (e) Streamline diagram of jet orifice inlet of vortex tube;(f) Streamline diagram of jet orifices inlet of doffing tube; (g) View of velocity vector of cross-sections S1, S2, S3 and S4, respectively"

Fig.5

Airflow field simulation results of normal state of vortex spinning process. (a)View of velocity volume rendering; (b) View of turbulent kinetic energy volume rendering; (c) View of velocity vector;(d) Streamline diagram of nozzle inlet; (e) Streamline diagram of jet orifice inlet of vortex tube;(f) Streamline diagram of jet orifices inlet of doffing tube; (g) View of velocity vector of cross-sections S1, S2, S3 and S4, respectively"

Tab.1

Yarn tenacity test results"

管纱
编号
成纱强度/(cN·tex-1)
初始纺纱过程值 正常纺纱过程值
1 8.26 10.59
2 7.32 10.61
3 7.43 9.96
4 7.21 10.67
5 7.34 10.53
平均值 7.51 10.47

Fig.6

Structure of viscose vortex yarn under SEM. (a) First viscose vortex yarn segments of initial state of yarn drawing-in spinning process; (b) Second viscose vortex yarn segments of initial state of yarn drawing-in spinning process; (c) First viscose vortex yarn segments of normal stable spinning process; (d) Second viscose vortex yarn segments of normal stable spinning process"

[1] 景慎全, 章友鹤, 周建迪, 等. 喷气涡流纺产品的结构调整及其应用领域的拓展[J]. 纺织导报, 2017(11):68-72.
JING Shenquan, ZHANG Youhe, ZHOU Jiandi, et al. Adjusting product structure and expanding applications of air jet vortex-spun yarn[J]. China Textile Leader, 2017(11):68-72.
[2] 吴红玲, 蒋少军. 浅谈纺纱技术与发展[J]. 纺织器材, 2007(2):112-116.
WU Hongling, JIANG Shaojun. Brief discussion on spinning technology and development[J]. Textile Accessories, 2007(2):112-116.
[3] ORTLEK H G, NAIR F, KILIK R, et al. Effect of spindle diameter and spindle working period on the properties of 100% viscose MVS yarns[J]. Fibres & Textiles in Eastern Europe, 2008,16(3):17-20.
[4] 邢明杰. 喷气涡流纺成纱机理及其应用的研究[D]. 上海:东华大学, 2007: 30-65.
XING Mingjie. Study on the mechanism of air-jet spinning nozzle and its applications[D]. Shanghai: Donghua University, 2007: 30-65.
[5] RWEI S P, PAI H I, WANG I C. Fluid simulation of the airflow in interlacing nozzles[J]. Textile Research Journal, 2001,71(7):630-634.
doi: 10.1177/004051750107100711
[6] ZENG Y C, YU C W. Numerical simulation of air flow in the nozzle of an air-jet spinning machine[J]. Textile Research Journal, 2003,73(4):350-356.
doi: 10.1177/004051750307300413
[7] GUO H F, AN X L, YU Z S, et al. A numerical and experimental study on the effect of the cone angle of the spindle in Murata vortex spinning machine[J]. ASME Journal of Fluids Engineering, 2008,130(3):1039-1043.
[8] 韩晨晨, 程隆棣, 高卫东, 等. 基于有限元模型的喷气涡流纺纤维运动轨迹模拟[J]. 纺织学报, 2018,39(2):32-37.
HAN Chenchen, CHENG Longdi, GAO Weidong, et al. Simulation of fiber trajectory in jet vortex spinning based on finite element model[J]. Journal of Textile Research, 2018,39(2):32-37.
[9] 韩晨晨, 程隆棣, 高卫东, 等. 传统型与自捻型喷气涡流纺的对比[J]. 纺织学报, 2018,39(1):25-31.
HAN Chenchen, CHENG Longdi, GAO Weidong, et al. Comparative analysis of conventional and self twist jet vortex spinning[J]. Journal of Textile Research, 2018,39(1):25-31.
[10] 袁龙超, 李新荣, 郭臻, 等. 喷气涡流纺喷嘴结构对流场影响的研究进展[J]. 纺织学报, 2018,39(1):169-178.
YUAN Longchao, LI Xinrong, GUO Zhen, et al. Research progress in influence of vortex spinning nozzle on flow field[J]. Journal of Textile Research, 2018,39(1):169-178.
[11] HOWALDT M, YOGANATHAN A P. Laser-Doppler anemometry to study fluid transport in fibrous asse-mblies[J]. Textile Research Journal, 1983,53(9):544-551.
doi: 10.1177/004051758305300906
[12] MOORE E M, SHAMBAUGH R L. Analysis of isothermal annular jets comparison of computational fluid dynamics and experimental data[J]. Journal of Applied Polymer Science, 2004,94(3):909-922.
doi: 10.1002/(ISSN)1097-4628
[13] KRUTKA H M, SHAMBAUGH R L. Analysis of multiple jets in the Schwarz melt-blowing die using computational fluid dynamics[J]. Industrial & Engineering Chemistry Research, 2005,44(23):8922-8932.
[14] SUN Y, WANG X. Optimization of air flow field of the melt blowing slot die via numerical simulation and genetic algorithm[J]. Journal of Applied Polymer Science, 2010,115(3):1540-1545.
doi: 10.1002/app.v115:3
[15] SUN Y, WANG X. Optimal geometry design of the melt blowing slot die via the orthogonal array method and numerical simulation[J]. Journal of The Textile Institute, 2011,102(1):65-69.
doi: 10.1080/00405000903475805
[16] NYLAND G H, SKJETNE P, MIKKELSEN A, et al. Brownian dynamics simulation of needle chains[J]. J Chem Phys, 1996,105:1198-1207.
doi: 10.1063/1.471941
[17] LI M L, YU C W, SHANG S S. A numerical and experimental study on the effect of the orifice angle of vortex tube in vortex spinning machine[J]. The Journal of The Textile Institute, 2013,104(12):1303-1311.
doi: 10.1080/00405000.2013.799260
[18] BASAL G, OXENHAM W. Vortex spun yarn vs. air-jet spun yarn[J]. AUTEX Research Journal, 2003,3(3):96-101.
[1] CHU Xi, QIU Hua. Flow simulations of ring swirl nozzle under different inlet pressure conditions [J]. Journal of Textile Research, 2020, 41(09): 33-38.
[2] DING Ning, LIN Jie. Free convection calculation method for performance prediction of thermal protective clothing in an unsteady thermal state [J]. Journal of Textile Research, 2020, 41(01): 139-144.
[3] LI Mingming, CHEN Ye, LI Xia, WANG Huaping. Influence of spinning process on property of parallel composite polyester fiber [J]. Journal of Textile Research, 2019, 40(12): 16-20.
[4] LI Sihu, SHEN Min, BAI Cong, CHEN Liang. Influence of structure parameter of auxiliary nozzle in air-jet loom on characteristics of flow field [J]. Journal of Textile Research, 2019, 40(11): 161-167.
[5] WEI Yanhong, XIE Chunping, LIU Xinjin, SU Xuzhong, YIN Gaowei. Drafting mechanism and application of spun yarn produced by large diameter soft rubber-covered roll [J]. Journal of Textile Research, 2019, 40(10): 62-67.
[6] CHEN Xu, WU Bingyang, FAN Ying, YANG Musheng. Numerical simulation of low temperature protection process for heat storage fabrics [J]. Journal of Textile Research, 2019, 40(07): 163-168.
[7] ZHENG Zhenrong, ZHI Wei, HAN Chenchen, ZHAO Xiaoming, PEI Xiaoyuan. Numerical simulation of heat transfer of carbon fiber fabric under impact of heat flux [J]. Journal of Textile Research, 2019, 40(06): 38-43.
[8] CAO Haijian, CHEN Hongxia, HUANG Xiaomei. Numerical simulation of side compressive properties on glass fiber/epoxy resin sandwich composite [J]. Journal of Textile Research, 2019, 40(05): 59-63.
[9] HE Jian, PEI Zeguang, ZHOU Jian, XIONG Xiangzhang, LÜ Haichen. Online monitoring of formation process of vortex core-spun yarn containing metal wire [J]. Journal of Textile Research, 2019, 40(05): 136-143.
[10] GUO Zhen, LI Xinrong, BU Zhaoning, YUAN Longchao. Three-dimensional numerical simulation of fiber movement in nozzle of murata vortex spinning [J]. Journal of Textile Research, 2019, 40(05): 131-135.
[11] GUANG Shaobo, JIN Yuzhen, ZHU Xiaochen. Analysis on airflow field in extended nozzle of air jet loom [J]. Journal of Textile Research, 2019, 40(04): 135-139.
[12] LIU Qiannan, ZHANG Han, LIU Xinjin, SU Xuzhong. Simulation on tensile mechanical properties of three-elementary weave woven fabrics based on ABAQUS [J]. Journal of Textile Research, 2019, 40(04): 44-50.
[13] ZHAO Yangyang, XUE Yuan, LIU Yuexing, ZHANG Guoqing. Formation mechanism of thick and thin sections of slub yarn and comparison of spinning process [J]. Journal of Textile Research, 2019, 40(03): 39-43.
[14] LIN Yanyan, ZOU Zhuanyong, CHEN Yuxiang, YANG Yanqiu. Thermal adhesion enhancement process of air jet vortex spun yarn [J]. Journal of Textile Research, 2019, 40(02): 58-62.
[15] SHI Qianqian, AKANKWASA Nicholus Tayari, LIN Huiting, ZHANG Yuze, WANG Jun. Comparative analysis of rotor spinning machines and yarn performance between conventional and dual-feed rotor spinning [J]. Journal of Textile Research, 2019, 40(02): 63-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!