Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (01): 119-129.doi: 10.13475/j.fzxb.20240304801
• Dyeing and Finishing Engineering • Previous Articles Next Articles
WEI Yi1, XU Hong1,2,3, ZHONG Yi1,2,3, ZHANG Linping1,2,3, MAO Zhiping1,2,3(
)
CLC Number:
| [1] | BADIA J D, MARTINEZ-FELIPE A, SANTONJA-BLASCO L, et al. Thermal and thermo-oxidative stability of reprocessed poly(ethylene terephthalate)[J]. Journal of Analytical and Applied Pyrolysis, 2013, 99:191-202. |
| [2] | LIU Y, ZHAO W, YU X, et al. Preparation of dyeing, flame retardant and anti-dripping polyethylene terephthalate fibers based on natural sodium copper chlorophyll dyeing and intercalation of phosphorylated sucrose fatty acid ester[J]. Composites Part B: Engineering, 2022. DOI:10.1016/j.compositesb.2022.110194. |
| [3] | FU T, WANG X L, WANG Y Z. Flame-responsive aryl ether nitrile structure towards multiple fire hazards suppression of thermoplastic polyester[J]. Journal of Hazardous Materials, 2020. DOI:10.1016/j.jhazmat.2020.123714. |
| [4] | FANG Y, LIU X, TAO X. Intumescent flame retardant and anti-dripping of PET fabrics through layer-by-layer assembly of chitosan and ammonium polyphosphate[J]. Progress in Organic Coatings, 2019, 134:162-168. |
| [5] | MALKAPPA K, BANDYOPADHYAY J, RAY S S. Design of poly(cyclotriphosphazene)-functionalized zirconium phosphate nanoplatelets to simultaneously enhance the dynamic mechanical and flame retardancy properties of polyamide 6[J]. ACS Omega, 2020, 5(23): 13867-13877. |
| [6] | ZHOU Y, QIU S, GUO W, et al. Construction of hierarchical Ti3C2Tx@PHBP-PHC architecture with enhanced free-radical quenching capability: effective reinforcement and fire safety performance in bis maleimide resin[J]. Chemical Engineering Journal, 2022. DOI:10.1016/j.cej.2021.131634. |
| [7] | ZHOU X, QIU S, MU X, et al. Polyphosphazenes-based flame retardants: a review[J]. Composites Part B: Engineering, 2020. DOI:10.1016/j.compositesb.2020.108397. |
| [8] | YANG D, DONG L, HOU X, et al. Synthesis of bio-based poly(cyclotriphosphazene-resveratrol) microspheres acting as both flame retardant and reinforcing agent to epoxy resin[J]. Polymers for Advanced Technologies, 2019, 31(1):135-145. |
| [9] | 孔抵柱, 李家炜, 徐红, 等. 环三磷腈和三嗪衍生物协同阻燃对聚酯性能的影响[J]. 纺织学报, 2017, 38(7): 11-17. |
| KONG Dizhu, LI Jiawei, XU Hong, et al. Synergistic effect between cyclotriphosphazene and triazine derivatives on flame retardancy of poly(ethyleneterephthalate)[J]. Journal of Textile Research, 2017, 38(7): 11-17. | |
| [10] | PAN T, HUANG X, WEI H, et al. Intrinsically fluorescent microspheres with superior thermal stability and broad ultraviolet-visible absorption based on hybrid polyphosphazene material[J]. Macromolecular Chemistry and Physics, 2012, 213(15):1590-1595. |
| [11] | SUI Y, SIMA H, SHAO W, et al. Novel bioderived cross-linked polyphosphazene microspheres decorated with FeCo-layered double hydroxide as an all-in-one intumescent flame retardant for epoxy resin[J]. Composites Part B: Engineering, 2022. DOI:10.1016/j.compositesb.2021.109463. |
| [12] | QIU S, SHI Y, WANG B, et al. Constructing 3D polyphosphazene nanotube@mesoporous silica@bimetallic phosphide ternary nanostructures via layer-by-layer method: synthesis and applications[J]. ACS Applied Materials & Interfaces, 2017. DOI:10.1021/acsami.7b06440. |
| [13] | DAVIS R D, GILMAN J W, VANDERHART D L. Processing degradation of polyamide 6/montmorillonite clay nanocomposites and clay organic modifier[J]. Polymer Degradation & Stability, 2003, 79(1):111-121. |
| [14] | QIU S, SHI Y, WANG B, et al. Constructing 3D polyphosphazene nanotube@mesoporous silica@bimetallic phosphide ternary nanostructures via layer-by-layer method: synthesis and applications[J]. ACS Appl Mater Interfaces, 2017, 9(27): 23027-23038. |
| [15] | QIU S, XING W, FENG X, et al. Self-standing cuprous oxide nanoparticles on silica @polyphosphazene nanospheres: 3D nanostructure for enhancing the flame retardancy and toxic effluents elimination of epoxy resins via synergistic catalytic effect[J]. Chemical Engineering Journal, 2017. DOI:10.1016/j.cej.2016.10.100. |
| [16] | 袁野, 张安莹, 魏丽菲, 等. 含磷阻燃聚酯的合成动力学及其性能[J]. 纺织学报, 2024, 45(4):50-58. |
| YUAN Ye, ZHANG Anying, WEI Lifei, et al. Synthesis kinetics and properties of phosphorus containing flame-retardant polyethylene tere-phthalate[J]. Journal of Textile Research, 2024, 45(4):50-58. | |
| [17] | TAO Y, LIU C, LI P, et al. A flame-retardant PET fabric coating: flammability, anti-dripping properties, and flame-retardant mechanism[J]. Progress in Organic Coatings, 2021. DOI:10.1016/j.porgcoat.2020.105971. |
| [18] | QIU S, XING W, MU X, et al. A 3D nanostructure based on transition-metal phosphide decorated heteroatom-doped mesoporous nanospheres interconnected with graphene: synthesis and applica-tions[J]. ACS Applied Materials & Interfaces, 2016. DOI:10.1021/acsami.6b11101. |
| [19] | YANG Guang, WU Wei-Hong, Yong-Hui, et al. Synthesis of a novel phosphazene-based flame retardant with active amine groups and its application in reducing the fire hazard of epoxy resin[J]. Journal of Hazardous Materials, 2019. DOI:10.1016/j.jhazmat.2018.11.093. |
| [20] | ZHAO X, WEI P, QIAN Y, et al. Effect of talc on thermal stability and flame retardancy of polycarbonate/PSBPBP composite[J]. Journal of Applied Polymer Science, 2012, 125(4):3167-3174. |
| [21] | 李宝洁, 朱元昭, 钟毅, 等. 聚磷腈改性沸石咪唑酯骨架材料的制备及其在聚酯阻燃中的应用[J]. 纺织学报, 2022, 43(11): 104-112. |
| LI Baojie, ZHU Yuanzhao, ZHONG Yi, et al. Preparation and application of polyphosphazene modified zeolite imidazolate framework materials for flame retardancy of poly(ethylene terephthalate)[J]. Journal of Textile Research, 2022, 43(11): 104-112. | |
| [22] | WANG P, XIA L, JIAN R, et al. Flame-retarding epoxy resin with an efficient P/N/S-containing flame retardant: preparation, thermal stability, and flame retardance[J]. Polymer Degradation and Stability, 2018, 149:69-77. |
| [23] | MALMGREN S, CIOSEK K, HAHLIN M, et al. Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy[J]. Electrochimica Acta, 2013, 97: 23-32. |
| [24] | TANG G, ZHANG R, WANG X, et al. Enhancement of flame retardant performance of bio-based polylactic acid composites with the incorporation of aluminum hypophosphite and expanded graphite[J]. Journal of Macromolecular Science Part A: Pure and Applied Chemistry, 2013, 50(2): 255-269. |
| [25] | PING Z, LEI S, LU H, et al. Synergistic effect of nanoflaky manganese phosphate on thermal degradation and flame retardant properties of intumescent flame retardant polypropylene system[J]. Polymer Degradation & Stability, 2009, 94(2): 201-207. |
| [26] | PARK Y T, QIAN Y, CHAN C, et al. Epoxy toughening with low graphene loading[J]. Advanced Functional Materials, 2015, 25(4): 575-585. |
|
||