Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (05): 105-115.doi: 10.13475/j.fzxb.20241204602
• Invited Column: Intelligent Fiber and Fabric Device • Previous Articles Next Articles
LIU Ye1,2, WANG Junsheng1,2,3(
), JIN Xing1,2,3
CLC Number:
| [1] | PARK H, PARK J, LIN S H, et al. Assessment of Firefighters' needs for personal protective equip-ment[J]. Fashion and Textiles, 2014. DOI: 10.1186/s40691-014-0008-3. |
| [2] | RATHOUR R, DAS A, ALAGIRUSAMY R. Study on the influence of constructional parameters on performance of outer layer of thermal protective clothing[J]. The Journal of the Textile Institute, 2023, 114(9): 1336-1346. |
| [3] | 肖晓, 陈雁. 防护手套实用性能展望[J]. 中国个体防护装备, 2024(1): 45-48. |
| XIAO Xiao, CHEN Yan. Practical performance outlook for protective gloves[J]. China Personal Protective Equipment, 2024(1): 45-48. | |
| [4] |
BHUIYAN M A R, WANG L J, SHAID A, et al. Advances and applications of chemical protective clothing system[J]. Journal of Industrial Textiles, 2019, 49(1): 97-138.
doi: 10.1177/1528083718779426 |
| [5] | 金星, 王俊胜, 商珂, 等. 干式水域救援服用复合织物的性能研究[J]. 消防科学与技术, 2023, 42(5): 694-698. |
| JIN Xing, WANG Junsheng, SHANG Ke, et al. Research on properties of composite fabric for dry water rescue suit[J]. Fire Science and Technology, 2023, 42(5): 694-698. | |
| [6] | ISLAM M M, WU Y Y. Function design of firefighting personal protective equipment: a systematic review[J]. Journal of Textile Science & Fashion Technology, 2020, 6(5): 1-8. |
| [7] | BASODAN R A M, PARK B, CHUNG H J. Smart personal protective equipment (PPE): current PPE needs, opportunities for nanotechnology and e-textiles[J]. Flexible and Printed Electronics, 2021. DOI: 10.1088/2058-8585/ac32a9. |
| [8] |
STOPPA M, CHIOLERIO A. Wearable electronics and smart textiles: a critical review[J]. Sensors, 2014, 14(7) :11957-11992.
doi: 10.3390/s140711957 pmid: 25004153 |
| [9] | 李佳璐, 肖莉萍, 俞建勇, 等. 智能织物材料的制备及其应用性能[J]. 纺织高校基础科学学报, 2022, 35(3):1-14. |
| LI Jialu, XIAO Liping, YU Jianyong, et al. Preparation and application performance of intelligent fabric materials[J]. Basic Sciences Journal of Textile Universities, 2022, 35(3): 1-14. | |
| [10] | SHI J D, LIU S, ZHANG L S, et al. Smart textile-integrated microelectronic systems for wearable applications[J]. Advanced Materials, 2020. DOI: 10.1002/adma.201901958. |
| [11] | ZHAO P F, SONG Y L, HU Z P, et al. Artificial intelligence enabled biodegradable all-textile sensor for smart monitoring and recognition[J]. Nano Energy, 2024. DOI: 10.1016/j.nanoen.2024.110118. |
| [12] | LU D X, LIAO S Q, CHU Y, et al. Highly durable and fast response fabric strain sensor for movement monitoring under extreme conditions[J]. Advanced Fiber Materials, 2023, 5: 223-234. |
| [13] | SHAKERIASKI F, GHODRAT M. Challenges and limitation of wearable sensors used in firefighters' protective clothing[J]. Journal of Fire Sciences, 2022, 40(3): 214-245. |
| [14] | 徐英俊, 王芳, 倪延朋, 等. 纺织品的阻燃及多功能化研究进展[J]. 纺织学报, 2022, 43(2): 1-9. |
| XU Yingjun, WANG Fang, NI Yanpeng, et al. Research progress on flame-retardation and multi-functionalization of textiles[J]. Journal of Textile Research, 2022, 43(2): 1-9. | |
| [15] | SHENG Z Z, LIU Z W, HOU Y L, et al. The rising aerogel fibers: status, challenges, and oppor-tunities[J]. Advanced Science, 2023. DOI: 10.1002/advs.202205762. |
| [16] | LI Y W, GUO Y B, FU F, et al. Triboelectric basalt textiles efficiently operating within an ultrawide temperature range[J]. Advanced Materials, 2024. DOI: 10.1002/adma.202401359. |
| [17] | SONG T, JIANG S H, CAI N X, et al. A strategy for human safety monitoring in high-temperature environments by 3D-printed heat-resistant TENG sensors[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2023.146292. |
| [18] | LI J, HU X N, PAN Y, et al. Mechanically robust and thermal insulating silica/aramid nanofiber composite aerogel fibers with dual networks for fire-resistant and flexible triboelectric nanogenerators[J]. Advanced Functional Materials, 2024. DOI: 10.1002/adfm.202410940. |
| [19] | SONG Y N, LI Y, YAN D X, et al. Novel passive cooling composite textile for both outdoor and indoor personal thermal management[J]. Composites Part A: Applied Science and Manufacturing, 2020. DOI: 10.1016/j.compositesa.2019.105738. |
| [20] | PHELPS H L, WATT S D, SIDHU H S, et al. Using phase change materials and air gaps in designing fire fighting suits: a mathematical investigation[J]. Fire Technology, 2019, 55(1): 363-381. |
| [21] | SHAKERIASKI F, GHODRAT M, RASHIDI M, et al. Smart coating in protective clothing for firefighters: an overview and recent improvements[J]. Journal of Industrial Textiles, 2022, 51(5S): 7428S-7454S. |
| [22] | 方剑, 任松, 张传雄, 等. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(9):1-9. |
| FANG Jian, REN Song, ZHANG Chuanxiong, et al. Electroactive fibrous materials for intelligent wearable textiles[J]. Journal of Textile Research, 2021, 42(9):1-9. | |
| [23] | HE H L, LIU J R, WANG Y S, et al. An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing[J] ACS Nano, 2022, 16(2): 2953-2967. |
| [24] | XU D, GAO C, LIU Y C, et al. Heat-resistant core-sheath yarn sensor with high durability and thermal adaptivity for fire rescue[J]. Device, 2024. DOI: 10.1016/j.device.2024.100366. |
| [25] | LUO Y, MIAO Y P, WANG H M, et al. Laser-induced Janus graphene/poly(p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field[J]. Nano Research, 2023, 16(5):7600-7608. |
| [26] | ROOSSIEN C C, HEUS R, RENEMAN M F, et al. Monitoring the core temperature of firefighters to validate a wearable non-invasive core thermometer in different types of protective clothing: concurrent in-vivo valida-tion[J]. Applied Ergonomics, 2020. DOI: 10.1016/j.apergo.2019.103001. |
| [27] | YU Z C, WANG Y H, QIN Y, et al. High fire safety thermal protective composite aerogel with efficient thermal insulation and reversible fire warning performance for firefighting clothing[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2023.147187. |
| [28] | ZHANG Q R, MA L, XUE T T, et al. Flame-retardant and thermal-protective polyimide-hydroxyapatite aerogel fiber-based composite textile for firefighting clothing[J]. Composites Part B: Engineering, 2022. DOI: 10.1016/j.compositesb.2022.110377. |
| [29] | JIANG Q, WAN Y H, LI X Q, et al. Fabrication of thermal insulation sodium alginate/SiO2 composite aerogel with superior radiative cooling function for firefighting clothing[J]. Pigment & Resin Technology, 2025, 54(2): 198-207. |
| [30] |
ZENG S N, PIAN S J, SU M Y, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 373(6555): 692-696.
doi: 10.1126/science.abi5484 pmid: 34353954 |
| [31] | OUYANG S N, JIANG Q, WU Y H, et al. High thermal buffer and radiative cooling sodium alginate-based Janus aerogel enables multi-scenario thermal management for firefighting clothing[J]. International Journal of Biological Macromolecules, 2024. DOI: 10.1016/j.ijbiomac.2024.133533. |
| [32] | WANG L J, PAN M J, LU Y H, et al. Developing smart fabric systems with shape memory layer for improved thermal protection and thermal comfort[J]. Materials & Design, 2022. DOI: 10.1016/j.matdes.2022.110922. |
| [33] | WANG X F, LEI Z W, MA X D, et al. A lightweight MXene-coated nonwoven fabric with excellent flame retardancy, EMI shielding, and electrothermal/photothermal conversion for wearable heater[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2021.132605. |
| [34] | SAIDI A, GAUVIN C, LADHARI S, et al. Advanced functional materials for intelligent thermoregulation in personal protective equipment[J]. Polymers, 2021. DOI: 10.3390/polym13213711. |
| [35] | JIAO X Y, XU L L, SUN X Y, et al. Single-wall carbon nanotube fiber non-woven fabrics with a high electrothermal heating response[J]. Nano Research, 2024, 17(6): 5621-5628. |
| [36] | TAO X L, CHEN X Y, WANG Z L. Design and synthesis of triboelectric polymers for high performance triboelectric nanogenerators[J]. Energy & Environmental Science, 2023, 16(9): 3654-3678. |
| [37] |
CHENG R, DONG K, LIU L, et al. Flame-retardant textile-based triboelectric nanogenerators for fire protection applications[J]. ACS Nano, 2020, 14(11): 15853-15863.
doi: 10.1021/acsnano.0c07148 pmid: 33155470 |
| [38] | SHI F L, WEI X, WU X Q. Reduced graphene oxide/TiO2 hybrid synergistically enhanced polyimide nanofibers with high triboelectric output and thermal charge stability[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.153093. |
| [39] | XING F J, OU Z Q, GAO X B, et al. Harvesting electrical energy from high temperature environment by aerogel nano-covered triboelectric yarns[J]. Advanced Functional Materials, 2022. DOI:10.1002/adfm.202205275. |
| [40] | AHMED A, EL-KADY M F, HASSAN I, et al. Fire-retardant, self-extinguishing triboelectric nano-generators[J]. Nano Energy, 2019, 59: 336-345. |
| [41] | YAN J, WANG H X, WANG K B, et al. Thermally robust hierarchical nanofiber triboelectric yarns for efficient energy harvesting in firefighting e-textiles[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.156188. |
| [42] | FENG L, XU S, SUN T, et al. Fire/acid/alkali-resistant aramid/carbon nanofiber triboelectric nanogenerator for self-powered biomotion and risk perception in fire and chemical environments[J]. Advanced Fiber Materials, 2023, 5: 1478-1492. |
| [43] |
CHEN T, SONG W Z, ZHANG M, et al. Acid and alkali-resistant fabric-based triboelectric nanogenerator for self-powered intelligent monitoring of protective clothing in highly corrosive environments[J]. RSC Advances, 2023, 13: 11697-11705.
doi: 10.1039/d3ra00212h pmid: 37063728 |
| [44] | HE X Y, LIU M Y, CAI J X, et al. Waste cotton-derived fiber-based thermoelectric aerogel for wearable and self-powered temperature-compression strain dual-parameter sensing[J]. Engineering, 2024, 39: 235-243. |
| [45] | LI H X, DING Z F, ZHOU Q, et al. Harness high-temperature thermal energy via elastic thermoelectric aerogels[J]. Nano-Micro Letters, 2024, 16(8): 196-210. |
| [46] | HE H L, QIN Y, ZHU Z Y, et al. Temperature-arousing self-powered fire warning e-textile based on p-n segment coaxial aerogel fibers for active fire protection in firefighting clothing[J] Nano-Micro Letters, 2023. DOI: 10.1007/s40820-023-01200-8. |
| [47] | KONG Y, JIN H, ZHANG G Y, et al. Integration of dual fire alarm self-powered system: leveraging intelligent wearable flame-retardant hydrophobic cotton fabric[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.154158. |
| [48] | WAN X J, SONG H Q, HU F, et al. Highly stable flexible supercapacitors enabled by dual-network polyampholyte hydrogel without additional electrolyte additives[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2023.141460. |
| [49] | YU Y, PAN D K, ZHAO L, et al. Paper-like polyphenylene sulfide/aramid fiber electrode with excellent areal capacitance and flame-retardant performance[J]. Advanced Fiber Materials, 2022, 4: 1246-1255. |
| [50] | WANG Z, WANG L, JIANG W Y, et al. Development of flame-retardant ion-gel electrolytes for safe and flexible supercapacitors[J]. Science China Materials, 2023, 66(8): 3129-3138. |
| [51] | LUO J, ZHANG Q C. In situ polymer gel electrolyte in boosting scalable fibre lithium battery applications[J]. Nano-Micro Letters, 2024. DOI: 10.1007/s40820-024-01451-z. |
| [52] | LU C H, JIANG H B, CHENG X R, et al. High-performance fibre battery with polymer gel elec-trolyte[J]. Nature, 2024, 629: 86-91. |
| [53] | CHEN L, ZHOU J W, WANG Y H, et al. Flexible, stretchable, water-/fire-proof fiber-shaped Li-CO2 batteries with high energy density[J]. Advanced Energy Materials, 2023. DOI: 10.1002/aenm.202202933. |
| [54] | MAO Y Y, LI Y, XIE J Y, et al. Triboelectric nanogenerator/supercapacitor in-one self-powered textile based on PTFE yarn wrapped PDMS/MnO2NW hybrid elastomer[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.105918. |
| [55] | WANG Y S, LIU J R, ZHAO Y H, et al. Temperature-triggered fire warning PEG@wood powder/carbon nanotube/calcium alginate composite aerogel and the application for firefighting clothing[J]. Composites Part B: Engineering, 2022. DOI: 10.1016/j.compositesb.2022.110348. |
| [56] | MA Y L, SHI W L, TANG K K, et al. Flexible polyimide-based flame-retardant e-textile for fire damage warning in firefighting clothing[J]. Progress in Organic Coatings, 2024. DOI: 10.1016/j.porgcoat.2024.108517. |
| [57] | HE H L, QIN Y, LIU J, et al. A wearable self-powered fire warning e-textile enabled by aramid nanofibers/MXene/silver nanowires aerogel fiber for fire protection used in firefighting clothing[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2023.141661. |
| [58] | BLECHA T, SOUKUP R, KASPAR P, et al. Smart firefighter protective suit-functional blocks and technologies[C]// 2018 IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 2018: C4. |
| [59] | ZHU Y F, ZHAO B B, CHENG Z F, et al. Efficient flame-retardant and multifunctional conductive flax fabric for intelligent fire protection and human motion monitoring[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2023.145610. |
| [60] | YANG J L, RONG L M, HUANG W X, et al. Flame-retardant, flexible, and breathable smart humidity sensing fabrics based on hydrogels for respiratory monitoring and non-contact sensing[J]. VIEW, 2023. DOI: 10.1002/VIW.20220060. |
| [61] | SUN P, CAI N X, ZHONG X D, et al. Facile monitoring for human motion on fireground by using MiEs-TENG sensor[J]. Nano Energy, 2021. DOI: 10.1016/j.nanoen.2021.106492. |
| [62] | KO Y, KIM J S, VU C C, et al. Ultrasensitive strain sensor based on pre-generated crack networks using Ag nanoparticles/single-walled carbon nanotube (SWCNT) hybrid fillers and a polyester woven elastic band[J]. Sensors, 2021. DOI: 10.3390/s21072531. |
| [63] | LI X J, LI Y T, GU H X, et al. A wearable screen-printed SERS array sensor on fire-retardant fibre gloves for on-site environmental emergency monitoring[J]. Analytical Methods, 2022, 14(8): 781-788. |
| [64] |
XU D, GAO C, GE C, et al. Integrated firefighting textile with temperature and pressure monitoring for personal defense[J]. ACS Sensors, 2024, 9(5): 2575-2584.
doi: 10.1021/acssensors.4c00288 pmid: 38695880 |
| [65] | YAN K, WANG J, ZONG Y, et al. A multifunctional coating toward wearable superhydrophobic fabric sensor with self-healing and flame-retardant properties with high fire alarm response[J]. Chemical Engineering Journal, 2024. DOI: 10.1016/j.cej.2024.151315. |
| [66] | JIANG Q, WANG Y H, QIN Y, et al. Durable and wearable self-powered temperature sensor based on self-healing thermoelectric fiber by coaxial wet spinning strategy for fire safety of firefighting clothing[J]. Advanced Fiber Materials, 2024, 6: 1387-1401. |
| [1] | YU Mengfei, GAO Wenli, REN Jing, CAO Leitao, PENG Ruoxuan, LING Shengjie. Preparation and properties of core-sheath fiber for triboelectric nanogenerator [J]. Journal of Textile Research, 2025, 46(05): 1-9. |
| [2] | ZHANG Jinqin, LI Jing, XIAO Ming, BI Shuguang, RAN Jianhua. Preparation of polystyrene/reduced graphene oxide microsphere sensing electrothermal fabrics by self-assembly method [J]. Journal of Textile Research, 2025, 46(05): 202-213. |
| [3] | YAN Jing, WANG Yaqian, LIU Jingjing, LI Haoyi, YANG Weimin, KANG Weimin, ZHUANG Xupin, CHENG Bowen. Preparation of melt-electrospun filament yarns and their applications in triboelectric nanogenerators [J]. Journal of Textile Research, 2025, 46(05): 23-29. |
| [4] | LI Run, CHANG Ziyang, ZHANG Rufan. Review of controlled synthesis and performance regulation of functional carbon nanotube fibers [J]. Journal of Textile Research, 2025, 46(05): 30-40. |
| [5] | CHEN Xiao, ZHAO Jizhong, DONG Kai. Strategies for enhancing performance of novel mechano-electric conversion fibers based on contact electrification effect [J]. Journal of Textile Research, 2025, 46(05): 41-48. |
| [6] | LIANG Qimin, YAN Zhuojun, LI Changxin, LIU Zhifeng, HE Sisi. Research progress and prospects in fibers and fabric-based electrochemical sensing and aqueous batteries for smart textiles [J]. Journal of Textile Research, 2025, 46(05): 89-95. |
| [7] | YU Shixiong, LIN Cantian, ZHU Shuntian, HU Hongxia, GAO Yanfeng, MA Rujun. Research progress in radiative thermal management fabrics and their infrared spectral design [J]. Journal of Textile Research, 2025, 46(05): 96-104. |
| [8] | DONG Zijing, WU Xinyuan, WANG Ruixia, ZHAO Huaxiang, QIAN Lijiang, YING Chengwei, SUN Runjun. Preparation and application of chitosan-modified conductive fabrics in human posture monitoring [J]. Journal of Textile Research, 2025, 46(04): 146-153. |
| [9] | SHE Yemei, PENG Yangyang, WANG Fameng, PAN Ruru. Preparation and performance of flexible pressure sensor based on warp knitted spacer fabric [J]. Journal of Textile Research, 2025, 46(03): 158-166. |
| [10] | YUE Xinyan, SHAO Jianbo, WANG Xiaohu, HAN Xiao, ZHAO Xiaoman, HONG Jianhan. One-dimensional structured flexible capacitive sensors based on silver coated polyamide fiber/polyamide fiber/waterborne polyurethane composite yarns [J]. Journal of Textile Research, 2025, 46(03): 82-89. |
| [11] | FAN Mengjing, YUE Xinyan, SHAO Jianbo, CHEN Yu, HONG Jianhan, HAN Xiao. Construction and sensing performance of capacitive torsion sensor made from electrospinning fiber core-spun yarn [J]. Journal of Textile Research, 2025, 46(02): 106-112. |
| [12] | ZHANG Rui, YE Suxian, WANG Jian, ZOU Zhuanyong. Preparation and performance of all-fabric iontronic flexible pressure sensor [J]. Journal of Textile Research, 2025, 46(02): 113-121. |
| [13] | CHEN Qi, WU Qi, XU Jinlin, JIA Hao. Self-assembly and sensing applications of patterned conductive fabric matrix [J]. Journal of Textile Research, 2025, 46(02): 218-226. |
| [14] | XU Jun, LU Nan, LI Ting, CHENG Ling, NIU Li, HAO Tianxu, ZHANG Cheng. Research progress in flexible wearable respiratory monitoring technology based on human respiratory mechanics [J]. Journal of Textile Research, 2025, 46(01): 217-226. |
| [15] | LIANG Wenyu, JI Dongxiao, QIN Xiaohong. Preparation of micro-nanofiber core-spun yarn and its electroluminescent properties [J]. Journal of Textile Research, 2025, 46(01): 42-51. |
|
||