Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (05): 70-76.doi: 10.13475/j.fzxb.20241204502
• Invited Column: Intelligent Fiber and Fabric Device • Previous Articles Next Articles
ZHANG Zeqi1,2, ZHOU Tao1,2, ZHOU Wenqi1,2, FAN Zhongyao1,2, YANG Jialei1,2, CHEN Guoyin1,2(
), PAN Shaowu1,2, ZHU Meifang1,2
CLC Number:
| [1] | CHENG L, LI J, GUO A Y, et al. Recent advances in flexible noninvasive electrodes for surface electromyography acquisition[J]. Flexible Electronics, 2023. DOI: 10.1038/s41528-023-00273-0. |
| [2] | SHI J D, FANG Y. Flexible and implantable microelectrodes for chronically stable neural inter-faces[J]. Advanced Materials, 2019. DOI: 10.1002/adma.201804895. |
| [3] | WON C H, JEONG U J, LEE S H, et al. Mechanically tissue-like and highly conductive au nanoparticles embedded elastomeric fiber electrodes of brain-machine interfaces for chronic in vivo brain neural record-ing[J]. Advanced Functional Materials, 2022. DOI: 10.1002/adfm.202205145. |
| [4] |
LIN S, JIANG J J, HUANG K, et al. Advanced electrode technologies for noninvasive brain-computer interfaces[J]. ACS Nano, 2023, 17(24): 24487-24513.
doi: 10.1021/acsnano.3c06781 pmid: 38064282 |
| [5] | GAO Q, AGARWAL S, GREINER A, et al. Electrospun fiber-based flexible electronics: fiber fabrication, device platform, functionality integration and applications[J]. Progress in Materials Science, 2023. DOI: 10.1016/j.pmatsci.2023.101139. |
| [6] | ZHU M J, WANG H M, LI S, et al. Flexible electrodes for in vivo and in vitro electrophysiological signal recording[J]. Advanced Healthcare Materials, 2021. DOI: 10.1002/adhm.202100646. |
| [7] | JONATHAN R, WANG H L, FENNO L, et al. Next-generation probes, particles, and proteins for neural interfacing[J]. Science Advances, 2017. DOI: 10.1126/sciadv.1601649. |
| [8] | KIM Y T, MARIOI R O. Material considerations for peripheral nerve interfacing[J]. MRS Bulletin, 2012, 37(6): 573-580. |
| [9] | CHEN X M, FENG Y H, ZHANG P, et al. Hydrogel fiber-based biointerfacing[J]. Advanced Materials, 2024. DOI:10.1002/adma.202413476. |
| [10] | CAO P L, WANG Y, YANG J, et al. Scalable layered heterogeneous hydrogel fibers with strain-induced crystallization for tough, resilient, and highly conductive soft bioelectronics[J]. Advanced Materials, 2024. DOI: 10.1002/adma.202409632. |
| [11] |
WEI L Q, WANG S S, SHAN M Q, et al. Conductive fibers for biomedical applications[J]. Bioactive Materials, 2023, 22: 343-364.
doi: 10.1016/j.bioactmat.2022.10.014 pmid: 36311045 |
| [12] | WU P Q, GU J F, LIU X, et al. A robust core-shell nanofabric with personal protection, health monitoring and physical comfort for smart sportswear[J]. Advanced Materials, 2024. DOI: 10.1002/adma.202411131. |
| [13] | WU H, CHAI S S, ZHU L F, et al. Wearable fiber-based visual strain sensors with high sensitivity and excellent cyclic stability for health monitoring and thermal management[J]. Nano Energy, 2024. DOI: 10.1016/j.nanoen.2024.110300. |
| [14] | ZHU Z G, SONG W H, BURUGAPALLI K, et al. Nano-yarn carbon nanotube fiber based enzymatic glucose biosensor[J]. Nanotechnology, 2010. DOI: 10.1088/0957-4484/21/16/165501. |
| [15] | DUYGU K, TAKANO H, SHIM E, et al. Transparent and flexible low noise graphene electrodes for simultaneous electrophysiology and neuroimaging[J]. Nature Communications, 2014. DOI: 10.1038/ncomms6259. |
| [16] | OH J M, VENTERS C C, CHAO D, et al. U1 snRNP regulates cancer cell migration and invasion in vitro[J]. Nature Communications, 2020. DOI: 10.1038/s41467-019-13993-7. |
| [17] | WANG K, FREWIN C L, ESRAFILZADEH D, et al. High-performance graphene-fiber-based neural recording microelectrodes[J]. Advanced Materials, 2019. DOI: 10.1002/adma.201805867. |
| [18] |
FLAVIA V, SUMMERSON S, AAZHANG B, et al. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes[J]. ACS Nano, 2015, 9(4): 4465-4474.
doi: 10.1021/acsnano.5b01060 pmid: 25803728 |
| [19] |
LU L L, FU X F, LIEW Y J, et al. Soft and mRI compatible neural electrodes from carbon nanotube fibers[J]. Nano Letters, 2019, 19(3): 1577-1586.
doi: 10.1021/acs.nanolett.8b04456 pmid: 30798604 |
| [20] | QIAN G, YU Y Y, KANG L X, et al. Modulus-tailorable, stretchable, and biocompatible carbonene fiber for adaptive neural electrode[J]. Advanced Functional Materials, 2022. DOI: 10.1002/adfm.202107360. |
| [21] | LU B Y, YUK H, LIN S T, et al. Pure PEDOT:PSS hydrogels[J]. Nature Communications, 2019. DOI: 10.1038/s41467-019-09003-5. |
| [22] | XU T C, JI W L, WANG X F, et al. Support-free PEDOT:PSS fibers as multifunctional microelectrodes for in vivo neural recording and modulation[J]. Angewandte Chemie International Edition, 2022. DOI: 10.1002/anie.202115074. |
| [23] | XU T C. Well-modulated interfacial ion transport enables D-sorbitol/PEDOT:PSS fibers to sense brain electrophysiological signals in vivo[J]. Chemical Communications, 2024, 60(63): 8244-8247. |
| [24] | ZHAO W Q, SHAO F, SUN F Q, et al. Neuron-inspired sticky artificial spider silk for signal transmission[J]. Advanced Materials, 2023. DOI: 10.1002/adma.202300876. |
| [25] | BAO Q L, ZHANG H, YANG J X, et al. Graphene-polymer nanofiber membrane for ultrafast photonics[J]. Advanced Functional Materials, 2010, 20(5): 782-791. |
| [26] | LÜ T, YAO Y, LI N, et al. Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes[J]. Nano Today, 2016, 11(5): 644-660. |
| [27] | MANTHIRIYAPPAN S, HYO Y N, AHN K H, et al. Conductive nanocomposites based on polystyrene microspheres and silver nanowires by latex blending[J]. ACS Applied Materials & Interfaces, 2015, 7(1): 756-764. |
| [28] | LU C, PARK S J, RICHNER T, et al. Flexible and stretchable nanowire-coated fibers for optoelectronic probing of spinal cord circuits[J]. Science Advances, 2017. DOI: 10.1126/sciadv.1600955. |
| [29] | WON C H, JEONG U J, LEE S H, et al. Mechanically tissue-like and highly conductive AU nanoparticles embedded elastomeric fiber electrodes of brain-machine interfaces for chronic in vivo brain neural recording[J]. Advanced Functional Materials, 2022. DOI: 10.1002/adfm.202205145. |
| [30] | TANG C Q, XIE S L, WANG M Y, et al. A fiber-shaped neural probe with alterable elastic moduli for direct implantation and stable electronic-brain inter-faces[J]. Journal of Materials Chemistry B, 2020, 8(20): 4387-4394. |
| [31] | HUANG S Z, LIU X Y, LIN S T, et al. Control of polymers' amorphous-crystalline transition enables miniaturization and multifunctional integration for hydrogel bioelectronics[J]. Nature Communications, 2024. DOI: 10.1038/s41467-024-47988-w. |
| [32] | DAWIT H, ZHAO Y W, WANG J, et al. Advances in conductive hydrogels for neural recording and stimul-ation[J]. Biomaterials Science, 2024, 12(11): 2786-2800. |
| [33] | GAO K P, YANG H J, WANG X L, et al. Soft pin-shaped dry electrode with bristles for EEG signal measurements[J]. Sensors and Actuators A: Physical, 2018, 283: 348-361. |
| [34] | CHANG B Y, LUO J B, LIU J, et al. A high-performance composite fiber with an organohydrogel sheath for electrocardiogram monitoring[J]. Journal of Materials Chemistry C, 2024, 12(32): 12413-12421. |
| [35] | CHANG B Y, LUO J B, XIA J, et al. Conductive elastic composite electrode and its application in electrocardiogram monitoring clothing[J]. ACS Applied Electronic Materials, 2023, 5(4): 2026-2036. |
| [36] | DRISCOLL N, ANTONINI M J, CANNON T M, et al. Multifunctional neural probes enable bidirectional electrical, optical, and chemical recording and stimulation in vivo[J]. Advanced Materials, 2024. DOI: 10.1002/adma.202408154. |
| [37] | CHEN J W, FANG Y, FENG J Y, et al. Fast-response fiber organic electrochemical transistor with vertical channel design for electrophysiological monitoring[J]. Journal of Materterials Chemistry B, 2024, 12(37): 9206-9212. |
| [38] | HU S F, SONG J Y, TIAN Q, et al. Mechanically and conductively robust eutectogel fiber produced by continuous wet spinning enables epidermal and implantable electrophysiological monitoring[J]. Advanced Fiber Materials, 2024, 6(6): 1980-1991. |
| [39] | WANG L C, XI Y, XU Q D, et al. Multifunctional IrOx neural probe for in situ dynamic brain hypoxia evalu-ation[J]. ACS Nano, 2023, 17(22): 22277-22286. |
| [40] | TANG C Q, HAN Z Q, LIU Z W, et al. A soft-fiber bioelectronic device with axon-like architecture enables reliable neural recording in vivo under vigorous activi-ties[J]. Advanced Materials, 2024. DOI: 10.1002/adma.202407874. |
| [1] | ZHU Menghui, GE Meitong, DONG Zhijia, CONG Honglian, MA Pibo. Structure and heat-moisture properties evaluation of double-sided wool/polyester weft-knitted fabrics [J]. Journal of Textile Research, 2025, 46(05): 179-185. |
| [2] | GUO Jieyan, XU Yingwen, DING Fang, REN Xuehong. Research progress in the applications of N-halamine antibacterial agents and their modified fibers [J]. Journal of Textile Research, 2025, 46(04): 255-263. |
| [3] | WANG Jing, DONG Zhijia, ZHENG Fei, HUANG Shoudong, PENG Huitao, WU Guangjun, MA Pibo. Structural design and craftsmanship implementation of fully shaped shoe body through flat knitting [J]. Journal of Textile Research, 2025, 46(04): 89-95. |
| [4] | LIU Jinfeng, DU Kangcun, XIAO Chang, FU Shaohai, ZHANG Liping. Preparation of porous MXene/thermoplastic polyurethane fiber and its stress-strain sensing performance [J]. Journal of Textile Research, 2025, 46(03): 41-48. |
| [5] | LIU Wei, TIAN Zhenchuan, SHEN Zhaoyang, MEI Run. Research process in metal-organic frameworks used in functional modification of fiber/fabrics [J]. Journal of Textile Research, 2024, 45(12): 215-224. |
| [6] | OU Zongquan, YU Jinchao, PAN Zhijuan. Spinning of photochromic polylactic acid/polyhydroxybutyrate blend fiber and its structure and properties [J]. Journal of Textile Research, 2024, 45(12): 9-17. |
| [7] | GUO Qi, WU Ning, MENG Ying, AN Da, HUANG Jianlong, CHEN Li. Process design and verification of tapered axisymmetric preform with variable thickness [J]. Journal of Textile Research, 2024, 45(12): 98-108. |
| [8] | WU Fan, LIANG Fengyu, XIAO Yiting, YANG Zhibo, WANG Wenting, FAN Wei. Preparation and properties of poly(3,4-ethylene supported dioxythiophene)/polystyrene sulfonic acid based composite conductive fibers [J]. Journal of Textile Research, 2024, 45(08): 99-106. |
| [9] | WANG Zunqin, LIU Dongyan, WANG Xiaoxu, ZHANG Diantang. Out-of-plane compression properties of angle interlock composites with variable densities [J]. Journal of Textile Research, 2024, 45(07): 63-71. |
| [10] | WANG Yipin, LI Xiaohui. Parametric characterization method of clothing fold morphology [J]. Journal of Textile Research, 2024, 45(06): 149-154. |
| [11] | WANG Yutao, CONG Honglian, GU Hongyang. Structural design and thermal-moist comfort of weft knitted knee pads [J]. Journal of Textile Research, 2023, 44(10): 68-74. |
| [12] | ZHOU Jiu, HU Yili. Design and application of equal float length on full-color weave in triple-weft jacquard fabric structures [J]. Journal of Textile Research, 2023, 44(06): 78-84. |
| [13] | QIN Yimin. Research progress in zinc and copper containing wound dressings [J]. Journal of Textile Research, 2023, 44(05): 213-219. |
| [14] | ZHANG Jing, HUANG Zhiheng, NIU Guangliang, LIANG Sheng, YANG Lüyun, WEI Lei, ZHOU Shifeng, HOU Chong, TAO Guangming. Review on thermal-drawn multimaterial fiber optoelectronics [J]. Journal of Textile Research, 2023, 44(01): 11-20. |
| [15] | CHEN Chen, HAN Yi, SUN Haiyan, YAO Chengkai, GAO Chao. Flower-shaped graphene oxide in-situ unfolding polyamide-6 and functional fibers thereof [J]. Journal of Textile Research, 2023, 44(01): 47-55. |
|
||