Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (06): 240-249.doi: 10.13475/j.fzxb.20241000302

• Comprehensive Review • Previous Articles     Next Articles

Research progress in alginate-based nonwoven medical dressings

WANG Huiting1, CHEN Yujian1, LIU Shiyi2, ZHANG Xiantao3, LU Bin4, ZOU Zhuanyong1, WANG Jian1, ZHANG Yinjiang1,5()   

  1. 1. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang 312000, China
    2. Shaoxing Fuqing Health Products Co., Ltd., Shaoxing, Zhejiang 312000, China
    3. Zhende Medical Supplies Co., Ltd., Shaoxing, Zhejiang 312000, China
    4. Hangzhou Hangfang Technology Co., Ltd., Hangzhou, Zhejiang 310000, China
    5. Hubei Key Laboratory of Biomass Fibers & Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2024-10-02 Revised:2025-03-12 Online:2025-06-15 Published:2025-07-02
  • Contact: ZHANG Yinjiang E-mail:zyjdhdx2011@hotmail.com

Abstract:

Significance With the increasing of the aged population, common diseases such as bedsores and diabetic ulcers are seen more frequently, and market demand for new medical dressings effective in dealing with such problems is increasing. Traditional or single functional medical dressings are difficult to meet the needs of the public. Alginate is widely used for manufacturing medical dressings because of its good biocompatibility, hemostatic and bacteriostatic properties. Nonwoven materials can be processed in a wide range, and the material is soft, breathable and comfortable, suitable for use in medical dressing substrates. Therefore, alginate-based nonwoven medical dressings play an increasingly important role in the treatment of wound bedsores and body surface ulcers.

Progress As a natural polymer polysaccharide, alginate has many carboxylic and hydroxyl groups and is suitable for ion exchange and functional modification. Meanwhile, it has good biocompatibility and degradability, which makes it show great potential in the application field of medical dressing. The nonwoven material has simple preparation process, soft, breathable and comfortable, and is suitable for medical dressing. At present, alginate-based nonwoven dressings can be roughly divided into pure alginate fiber dressings, alginate fiber and other fiber mixed dressings, alginate finishing modified dressings and alginate nanofiber nonwoven dressings. The preparation methods mainly include spinning (electrospinning, microfluidic spinning, centrifugal spinning), carding and strengthening (needling, spunlace), finishing and compound methods. The alginate-based nonwoven dressing has great hemostatic ability, but has insufficient antibacterial ability, which can be modified by alginate derivative or add antibacterial agents to solve the problem in the future. Secondly, the use of diverse nonwoven substrate structures for medical dressings can effectively improve wound healing. Thirdly, materials with specific functions are added to give alginate-based nonwoven medical dressings corresponding functions, expand the application range of medical dressings, and achieve intelligentization of the dressings. The development of multi-functional intelligent dressings (anti-seawater immersion, great water vapor transmission rate, improving immunity, monitoring wound pH value changes, reducing scars, moistening sores, promoting blood coagulation) is an important future development direction. As a new medical dressing, alginate-based nonwoven medical dressing has a favorable development prospect.

Conclusion and Prospect At present, there are many types of alginate-based nonwoven medical dressings associated with various preparation methods. The new multi-functional and integrated alginate-based nonwoven medical dressings are the development direction of medical dressings. In the future, it should actively search for natural antibacterial agents or other new antibacterial agents with wide sources and great non-toxic bacteriostatic performance, or modify alginate to strengthen bacteriostatic performance. The structural design of the innovative alginate-based nonwoven medical dressing achieves the most suitable wound healing environment and maximizes patient convenience. At the same time, by adding specific functional components to medical dressings, the dressings have special functions and realize intelligence on the basis of basic functions, and meet the needs of special wounds.

Key words: medical textile, alginate, nonwoven medical dressing, bacteriostasis, structural design, special function

CLC Number: 

  • TS176.4

Fig.1

Characterization chart of an innovative alginate non-woven dressing with enhanced bacteriostatic properties"

Fig.2

Characterization chart of structurally designed innovative alginate nonwoven dressings"

Fig.3

Characterization chart of innovative alginate non-woven dressings with special features"

[1] 侯超, 辛斌杰, 李庭晓. 新型伤口敷料的性能及研究进展[J]. 棉纺织技术, 2022, 50(S1):63-69.
HOU Chao, XIN Binjie, LI Tingxiao. Properties and research progress of novel wound dressings[J]. Cotton Textile Technology, 2022, 50(S1):63-69.
[2] UZUN M. Developments in nonwovens for wound dressings[J]. Advances in Technical Nonwovens, 2016. DOI:10.1016/B978-0-08-100575-0.00017-6.
[3] JONES M L. A short history of the development of wound care dressings[J]. British Journal of Healthcare Assistants, 2015, 9(10):482-485.
[4] 李建全, 陶荣, 王欢, 等. 海藻酸医用敷料的制备与开发[J]. 非织造布, 2013(3):92-94.
LI Jianquan, TAO Rong, WANG Huan, et al. Preparation and development of alginate medical dressing[J]. Nonwovens, 2013(3):92-94.
[5] 顾其胜, 王帅帅, 王庆生, 等. 海藻酸盐敷料应用现状与研究进展[J]. 中国修复重建外科杂志, 2014, 28(2): 255-258.
GU Qisheng, WANG Shuaishuai, WANG Qingsheng, et al. Application and research progress of alginate dressing[J]. Chinese Journal of Prosthoplastic and Reconstructive Surgery, 2014, 28(2):255-258.
[6] MAO N, RUSSELL S J. Nonwoven wound dress-ings[J]. Textile Progress, 2010, 36(4): 1-57.
[7] 王玉晓, 李晶, 王丹, 等. 医用非织造产品的研究与应用进展[J]. 纺织导报, 2017(12): 69-72.
WANG Yuxiao, LI Jing, WANG Dan, et al. Research and application progress of medical nonwovens[J]. China Textile Leader, 2017(12):69-72.
[8] DHIVYA S, PADMA V V, SANTHINI E. Wound dressings: a review[J]. Biomedicine, 2015, 5(4): 22.
[9] 柯勤飞, 靳向煜. 非织造学[M]. 4版. 上海: 东华大学出版社, 2024:125-151.
KE Qinfei, JIN Xiangyu. Nonwovens[M]. 4th ed. Shanghai: Donghua University Press, 2024:125-151.
[10] 顾鹏斐, 李素英, 戴家木. 非织造材料基新型医用敷料的研究进展[J]. 高分子通报, 2018, 236(12):17-21.
GU Pengfei, LI Suying, DAI Jiamu. Research progress of novel medical dressings based on nonwoven mate-rials[J]. Polymer Bulletin, 2018, 236(12):17-21.
[11] ZHANG C, WANG W, ZHAO X, et al. Preparation of alginate oligosaccharides and their biological activities in plants: a review[J]. Trends in Carbohydrate Research, 2020. DOI:10.1016/j.carres.2020.108056.
[12] 朱鹏, 张兴群, 王云龙, 等. 海藻酸盐医用敷料研究进展[J]. 上海纺织科技, 2020, 48(11):13-18.
ZHU Peng, ZHANG Xingqun, WANG Yunlong, et al. Research progress of alginate dressing for medical purposes[J]. Shanghai Textile Science & Technology, 2020, 48(11):13-18.
[13] CHRISTENSEN B E. Alginates as biomaterials in tissue engineering[J]. Carbohydrate Chemistry: Chemical and Biological Approaches, 2011, 37:227-258.
[14] 杨璧玲. 海藻酸盐纤维敷料及其纤维制备技术[J]. 产业用纺织品, 2022, 40(4):1-6.
YANG Biling. Alginate fiber dressing and its fiber preparation technology[J]. Industrial Textiles, 2022, 40(4):1-6.
[15] ZHANG H, CHENG J, AO Q. Preparation of alginate-based biomaterials and their applications in biomedi-cine[J]. Marine Drugs, 2021. DOI:10.3390/mdl9050264.
[16] 张静, 林华庆, 马秋燕, 等. 海藻酸钠及其衍生物在生物医药中的应用进展[J]. 中国药房, 2019, 30(23): 3307-3312.
ZHANG Jing, LIN Huaqing, MA Qiuyan, et al. Progress in the application of sodium alginate and its derivatives in biomedicine[J]. Chinese Pharmacy, 2019, 30(23): 3307-3312.
[17] PAWAR S N, EDGAR K J. Alginate derivatization: a review of chemistry, properties and applications[J]. Biomaterials, 2012, 33(11):3279-3305.
doi: 10.1016/j.biomaterials.2012.01.007 pmid: 22281421
[18] SHANMUGASUNDARAM O L, SYED Zameer Ahmed K, SUJATHA K, et al. Fabrication andcharacterization of chicken feather keratin/polysaccharides blended polymer coated nonwoven dressing materials for wound healing applications[J]. Materials Science & Engineering C: Materials for Biological Applications, 2018, 92:26-33.
[19] 秦益民. 海藻酸盐医用敷料的临床应用[J]. 纺织学报, 2014, 35(4): 148-153.
QIN Yimin. Clinical application of alginate dressing for medical purposes[J]. Journal of Textile Research, 2014, 35(4):148-153.
[20] 初晓夏, 王斌, 王海涛, 等. 海藻酸钙纤维制备新型医用止血敷料的评价研究[J]. 青岛大学医学院学报, 2016, 52(2):178-181.
CHU Xiaoxia, WANG Bin, WANG Haitao, et al. Evaluation of new medical hemostatic dressing prepared by calcium alginate fiber[J]. Journal of Medical College of Qingdao University, 2016, 52(2):178-181.
[21] 刘越, 朱平, 马佳娜. 纯海藻酸盐纤维的性能[J]. 纺织学报, 2009, 30(8):13-16.
LIU Yue, ZHU Ping, MA Jiana. Properties of pure alginate fiber[J]. Journal of Textile Research, 2009, 30(8):13-16.
[22] 王锐, 莫小慧, 王晓东. 海藻酸盐纤维应用现状及发展趋势[J]. 纺织学报, 2014, 35(2):145-152.
WANG Rui, MO Xiaohui, WANG Xiaodong. Application status and development trend of alginate fiber[J]. Journal of Textile Research, 2014, 35(2):145-152.
[23] FAN L, PENG K, LI M, et al. Preparation and properties of carboxymethyl κ-carrageenan/alginate blend fibers[J]. Journal of Biomaterials Science, 2013, 24(9):1099-1111.
[24] 潘颖, 韩光亭, 柳荣展, 等. 一种纤维素纳米纤丝/海藻酸盐复合纤维的制备方法:201611006229.1[P]. 2018-11-23.
PAN Ying, HAN Guangting, LIU Rongzhan, et al. A preparation method of cellulose nanofilament/alginate composite fiber: 201611006229.1[P]. 2018-11-23.
[25] 王雅琦, 陈行, 黄斐, 等. 接枝聚乙二醇纤维素纳米晶的制备及其对海藻酸复合纤维性能的影响[C]// 2021年第二届全国功能高分子材料学术研讨会论文集. 西安: 西安科技大学, 2021:7-12.
WANG Yaqi, CHEN Xing, HUANG Fei, et al. Preparation of grafted poly(ethylene glycol) cellulose nanocrystals and its effect on the properties of alginate composite fibers[C]// Proceedings of the 2nd National Symposium on Functional Polymer Materials, Xi'an: Xi'an University of Science and Technology, 2021:7-12.
[26] KAMAL Khan M, RAHMAN M M, NESA B, et al. Preparation and characterization of poly (ethylene glycol) grafted ca-alginate fibers by γ-irradiation for biomedical applications[J]. Journal of Adhesion Science and Technology, 2013, 27(2):216-226.
[27] MARKOVIĆ D, TSENG H-H, NUNNEY T, et al. Novel antimicrobial nanocomposite based on polypropylene non-woven fabric, biopolymer alginate and copper oxides nanoparticles[J]. Applied Surface Science, 2020. DOI:10.1016/j.apsusc.2020.146829.
[28] KUDZIN M H, GIEŁDOWSKA M, MROZIŃSKA Z, et al. Poly(lactic acid)/zinc/alginate complex material: preparation and antimicrobial properties[J]. Antibiotics, 2021. DOI:10.3390/antibiotics10111327.
[29] SADEGHIANMARYAN A, NAGHIEH S, SALIMI A, et al. Fabrication of cellulosic nonwoven-based wound dressings coated with CTAB-loaded double network PAMPS/PNAA hydrogels[J]. Journal of Natural Fibers, 2022, 19(16):12718-12735.
[30] AHMAD F, MUSHTAQ B, AHMAD S, et al. A novel composite of hemp fiber and alginate hydrogel for wound dressings[J]. Journal of Polymers and the Environment, 2023, 31(6):2294-2305.
[31] 余国飞, 但年华, 但卫华, 等. 等离子体辅助壳聚糖季铵盐接枝海藻酸盐制备抗菌敷料[J]. 上海纺织科技, 2021, 49(5):34-38.
YU Guofei, DAN Nianhua, DAN Weihua, et al. Preparation of antimicrobial dressing by plasma-assisted chitosan quaternary ammonium salt grafting alginate[J]. Shanghai Textile Science & Technology, 2021, 49(5): 34-38.
[32] ZHANG M, PENG X, FAN P, et al. Recent progress in preparation and application of fibers using microfluidic spinning technology[J]. Macromolecular Chemistry and Physics, 2022. DOI:10.1002/macp.202100451.
[33] MARJUBAN S M H, RAHMAN M, DUZA S S, et al. Recent advances in centrifugal spinning and their applications in tissue engineering[J]. Polymers, 2023. DOI:10.3390/polym15051253.
[34] LI Y, ZOU C, SHAO J, et al. Preparation of SiO2/PS superhydrophobic fibers with bionic controllable micro-nano structure via centrifugal spinning[J]. RSC Advances, 2017, 7(18):11041-11048.
[35] THAIRIN T, WUTTICHAROENMONGKOL P. Ciprofloxacin-loaded alginate/poly(vinyl alcohol)/gelatin electrospun nanofiber mats as antibacterial wound dressings[J]. Journal of Industrial Textiles, 2021, 51(1):1296-1322.
[36] SUN F, GUO J, LIU Y, et al. Preparation, characterizations and properties of sodium alginate grafted acrylonitrile/polyethylene glycol electrospun nanofibers[J]. International Journal of Biological Macromolecules, 2019, 137: 420-425.
doi: S0141-8130(19)33675-X pmid: 31252015
[37] DING M, WANG X, MAN J, et al. Antibacterial and hemostatic polyvinyl alcohol/microcrystalline cellulose reinforced sodium alginate breathable dressing containing euphorbia humifusa extract based on microfluidic spinning technology[J]. International Journal of Biological Macromolecules, 2023. DOI:10.1016/j.ijbiomac.2023.124167.
[38] AKHTAR M, AHMED S, HUSSAIN R, et al. Centrifugal spinning of polyvinyl alcohol/sodium alginate-di-aldehyde-gelatin based antibacterial nanofibers intended for skin tissue engineering[J]. Materials Letters, 2022. DOI:10.1016/j.matlet.2022.132530.
[39] XUE J, WU T, DAI Y, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8): 5298-5415.
doi: 10.1021/acs.chemrev.8b00593 pmid: 30916938
[40] FADIL F, AFFANDI N D N, MISNON M I, et al. Review on electrospun nanofiber-applied products[J]. Polymers, 2021. DOI:10.3390/polym13132087.
[41] HAN X, HUO P, DING Z, et al. Preparation of lutein-loaded PVA/sodium alginate nanofibers and investigation of its release behavior[J]. Pharmaceutics, 2019. DOI:10.3390/pharmaceutics11090449.
[42] BAKHSHESHI-RAD H R, HADISI Z, ISMAIL A F, et al. In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance[J]. Polymer Testing, 2020. DOI:10.1016/j.polymertesting.2019.106298.
[43] ZHANG M, PENG X, FAN P, et al. Recent progress in preparation and application of fibers using microfluidic spinning technology[J]. Macromolecular Chemistry and Physics, 2022. DOI:10.1002/macp.202100451.
[44] MA W, LING S, ZHANG J, et al. Microfluidic fabrication of calcium alginate helical microfibers for highly stretchable wound dressing[J]. Journal of Polymer Science, 2022, 60(11):1741-1749.
[45] ZHANG Y, LI T T, WANG Z, et al. Coaxial microfluidic spinning design produced high strength alginate membranes for antibacterial activity and drug release[J]. International Journal of Biological Macromolecules, 2023. DOI:10.1016/j.ijbiomac.2023.124956.
[46] ZOU W, CHEN R Y, ZHANG G Z, et al. Recent advances in centrifugal spinning preparation of nanofibers[J]. Advanced Materials Research, 2014, 3441(1015):170-176.
[47] MARJUBAN S M H, RAHMAN M, DUZA S S, et al. Recent advances in centrifugal spinning and their applications in tissue engineering[J]. Polymers, 2023. DOI:10.3390/polym15051253.
[48] LU Y, LI X, HOU T, et al. Controlled release of tetracycline hydrochloride loaded highly absorbent alginate submicron fibers from centrifugally spin-ning[J]. Fibers and Polymers, 2021, 23(1): 28-36.
[49] IBRAHIM E, TAYLOR K, AHMED S, et al. Centrifugally spun poly(D, L-lactic acid)-alginate composite microbeads for drug delivery and tissue engineering[J]. International Journal of Biological Macromolecules, 2023. DOI:10.1016/j.ijbiomac.2023.123743.
[50] 徐海涛, 陈锦涛, 韦加娜. 海藻酸钙/改性壳聚糖混纺亲水性纤维敷料的制备及其性能研究[J]. 广东化工, 2018, 45(5):70-71, 79.
XU Haitao, CHEN Jintao, WEI Jiana. Preparation and properties of calcium alginate/modified chitosan blended hydrophilic fiber dressing[J]. Guangdong Chemical Industry, 2018, 45(5):70-71, 79.
[51] ZHANG G, XIAO Y, YAN J, et al. Fabrication of ZnO nanoparticle-coated calcium alginate nonwoven fabric by ion exchange method based on amino hyperbranched polymer[J]. Materials Letters, 2020. DOI:10.1016/j.matlet.2020.127624.
[52] 殷义霞, 汪梦婷, 周倩, 等. 水刺含银藻酸盐敷料的制备及基于AFM的抑菌机理[J]. 武汉理工大学学报, 2017, 39(5):34-40, 46.
YIN Yixia, WANG Mengting, ZHOU Qian, et al. Preparation of silver-containing alginate dressing of spunx spunx and its bacteriostatic mechanism based on AFM[J]. Journal of Wuhan University of Technology, 2017, 39(5):34-40, 46.
[53] 王树源. 汉麻基海藻酸钙复合医用敷料的制备及性能研究[D]. 上海: 东华大学, 2014:61.
WANG Shuyuan. Preparation and properties of hammar-based calcium alginate composite medical dressing[D]. Shanghai: Donghua University, 2014:61.
[54] 张建春. 功能性复合非织造布[J]. 产业用纺织品, 2001, 19(1):5-9.
ZHANG Jianchun. Functional composite non-wovens[J]. Industrial Textiles, 2001, 19(1):5-9.
[55] MONTASER A, ABDEL-MOHSEN A, RAMADAN M, et al. Preparation and characterization of alginate/silver/nicotinamide nanocomposites for treating diabetic wounds[J]. International Journal of Biological Macromolecules, 2016, 92:739-747.
doi: S0141-8130(16)30873-X pmid: 27431797
[56] ZHANG J, HU L, ZHANG Q, et al. Polyhexamethylene guanidine hydrochloride modified sodium alginate nonwoven with potent antibacterial and hemostatic properties for infected full-thickness wound healing[J]. International Journal of Biological Macromolecules, 2022, 209:2142-2150.
doi: 10.1016/j.ijbiomac.2022.04.194 pmid: 35500777
[57] DAS D, PRADHAN A K, CHATTOPADHYAY R, et al. Composite nonwovens[J]. Textile Progress, 2012, 44(1): 1-84.
[58] KANG Y O, IM J N, PARK W H. Morphological and permeable properties of antibacterial double-layered composite nonwovens consisting of microfibers and nanofibers[J]. Composites Part B: Engineering, 2015, 75(15):256-263.
[59] CHAO C Y, LOU C W, SUNG H W, et al. Fabrication of novel wound dressing[C]// Proceedings of the Advanced Materials Research. Switzerland: Trans Tech Publ, 2010: 979-982.
[60] GAO Y, ZHANG X, JIN X. Preparation and properties of minocycline-Loaded carboxymethyl chitosan gel/alginate nonwovens composite wound dressings[J]. Marine Drugs, 2019. DOI:10.3390/mdl7100575.
[61] SHANMUGASUNDARAM O L, AHMED K S Z, SUJATHA K, et al. Fabrication and characterization of chicken feather keratin/polysaccharides blended polymer coated nonwoven dressing materials for wound healing applications[J]. Materials Science and Engineering, 2018, 92:26-33.
[62] MONTASER A S, JLASSI K, RAMADAN M A, et al. Alginate, gelatin, and carboxymethyl cellulose coated nonwoven fabrics containing antimicrobial AgNPs for skin wound healing in rats[J]. International Journal of Biological Macromolecules, 2021, 173(20):203-210.
[63] LIN Z, WU T, WANG W, et al. Biofunctions of antimicrobial peptide-conjugated alginate/hyaluronicacid/collagen wound dressings promote wound healing of a mixed-bacteria-infected wound[J]. International Journal of Biological Macromolecules, 2019, 140(27):330-342.
[64] 但年华, 余国飞, 但卫华, 等. 一种抗菌型海藻酸盐敷料及其制备方法: 202010489884.7[P]. 2022-03-11.
DAN Nianhua, YU Guofei, DAN Weihua, et al. An antibacterial alginate dressing and its preparation method:202010489884.7[P]. 2022-03-11.
[65] 邓云龙, 高超, 高冠兴, 等. 一种海藻酸盐创可贴: 201520556801.6[P]. 2015-12-09.
DENG Yunlong, GAO Chao, GAO Guanxing, et al. An alginate band-aid: 201520556801.6[P]. 2015-12-09.
[66] TALUKDER M E, HASAN K M F, WANG J, et al. Novel fibrin functionalized multilayered electrospun nanofiber membrane for burn wound treatment[J]. Journal of Materials Science, 2021, 56(22):12814-12834.
[67] 杨璧玲, 吴佳林, 王磊, 等. 一种微纳米海藻酸盐纤维敷料及其制备方法: 202010790626.2[P]. 2020-11-27.
YANG Biling, WU Jialin, WANG Lei, et al. A micro- and nano-alginate fiber dressing and its preparation method: 202010790626.2[P]. 2020-11-27.
[68] ZHANG Z, LI J, WANG Y, et al. Preparation of pH-sensitive porous polylactic acid-based medical dressing with self-pumping function[J]. International Journal of Biological Macromolecules, 2024. DOI:10.1016/j.ijbiomac.2024.131563.
[69] GAO Y, JIN X. Needle-punched three-dimensional nonwoven wound dressings with density gradient from biocompatible calcium alginate fiber[J]. Textile Research Journal, 2019, 89(14):2776-2788.
[70] WANG Y, WANG H, LU B, et al. A sandwich-like silk fibroin/polysaccharide composite dressing with continual biofluid draining for wound exudate management[J]. International Journal of Biological Macromolecules, 2023, 253(4):1-11.
[71] 白爽. 胶原蛋白-壳聚糖静电纺丝膜复合海藻酸盐防海水浸泡敷贴的研究[D]. 上海: 上海海洋大学, 2019: 80.
BAI Shuang. Study of collagen-chitosan electrostatic spinning film composite alginate anti-seawater immersion dressing[D]. Shanghai: Shanghai Ocean University, 2019:80.
[72] 周建大, 聂雄英, 谢慧清, 等. 一种臭氧海藻酸盐抗菌功能性伤口敷料的制备方法: 202110125990.1[P].2021-06-04.
ZHOU Jianda, NIE Xiongying, XIE Huiqing, et al. A preparation method of ozonated alginate antibacterial functional wound dressing: 202110125990.1[P].2021-06-04.
[73] 邓云龙, 尚宪明, 张妮, 等. 一种负载胶原蛋白的海藻酸盐医用敷料及其制备方法, 201710862867.1[P]. 2018-02-16.
DENG Yunlong, SHANG Xianming, ZHANG Ni, et al. A collagen-loaded alginate medical dressing and its preparation method: 201710862867.1[P]. 2018-02-16.
[74] 山传雷, 于湖生.海藻酸钠海螵蛸仙鹤草提取物共混纤维及其制备方法: 201510237189.0[P]. 2017-03-08.
SHAN Chuanlei, YU Husheng. Sodium alginate cuttlebone extract blend fiber and preparation method thereof: 201510237189.0[P]. 2017-03-08.
[75] PAKOLPAKL A, OSMAN B, GÖKTALAY G, et al. Design and in vivo evaluation of alginate-based pH-sensing electrospun wound dressing containing anthocyanins[J]. Journal of Polymer Research, 2021. DOI:10.1007/S10965-020-024001-1.
[76] CUI L, HU J, WANG W, et al. Smart pH response flexible sensor based on calcium alginate fibers incorporated with natural dye for wound healing monitoring[J]. Cellulose, 2020, 27(14):6367-6381.
[1] CHEN Yajuan, GUO Hanyu, ZHANG Chentian, LI Xinxin, ZHANG Xueping. Preparation and hygroscopic properties of polyvinyl alcohol/sodium alginate/polyamide 66 composite hydrogel core-spun yarns [J]. Journal of Textile Research, 2025, 46(06): 103-110.
[2] DING Kai, FU Fen, ZHANG Zhixiang, YANG Yutong, LI Chaojing, ZHAO Fan, WANG Lu, WANG Fujun. Design and mechanical performance of knitted artificial bladder for pressing urination [J]. Journal of Textile Research, 2025, 46(05): 169-178.
[3] ZHU Menghui, GE Meitong, DONG Zhijia, CONG Honglian, MA Pibo. Structure and heat-moisture properties evaluation of double-sided wool/polyester weft-knitted fabrics [J]. Journal of Textile Research, 2025, 46(05): 179-185.
[4] ZHANG Zeqi, ZHOU Tao, ZHOU Wenqi, FAN Zhongyao, YANG Jialei, CHEN Guoyin, PAN Shaowu, ZHU Meifang. Research progress in conductive fibers for electrophysiological signal monitoring [J]. Journal of Textile Research, 2025, 46(05): 70-76.
[5] WANG Jing, DONG Zhijia, ZHENG Fei, HUANG Shoudong, PENG Huitao, WU Guangjun, MA Pibo. Structural design and craftsmanship implementation of fully shaped shoe body through flat knitting [J]. Journal of Textile Research, 2025, 46(04): 89-95.
[6] FU Fen, WANG Yuhan, DING Kai, ZHAO Fan, LI Chaojing, WANG Lu, ZENG Yongchun, WANG Fujun. Research progress in cellulose-based hemostatic materials [J]. Journal of Textile Research, 2025, 46(04): 226-234.
[7] LI Yimeng, SHAN Mengqi, LI Wenxin, ZHOU Fengkai, MAO Jifu, WANG Fujun, WANG Lu. Preparation of polypyrrole-based stretchable conductive myocardial patches and their electroconductive properties [J]. Journal of Textile Research, 2024, 45(12): 89-97.
[8] GUO Qi, WU Ning, MENG Ying, AN Da, HUANG Jianlong, CHEN Li. Process design and verification of tapered axisymmetric preform with variable thickness [J]. Journal of Textile Research, 2024, 45(12): 98-108.
[9] XIANG Xuexue, LIU Na, GUO Jiaqi, GAO Jing, WANG Lu, HU Xiuyuan. Preparation and performance of patterned thermal polyester medical bandage [J]. Journal of Textile Research, 2024, 45(08): 198-204.
[10] QIAN Yang, ZHANG Lu, LI Chenyang, WANG Rongwu. Preparation and performance of electrospun sodium alginate composite nanofiber membranes [J]. Journal of Textile Research, 2024, 45(08): 18-25.
[11] WANG Zunqin, LIU Dongyan, WANG Xiaoxu, ZHANG Diantang. Out-of-plane compression properties of angle interlock composites with variable densities [J]. Journal of Textile Research, 2024, 45(07): 63-71.
[12] XI Lifeng, JIANG Gaoming, MA Pibo, JIA Wei, ZHANG Hongbin, WANG Jiamian, XIA Fenglin, ZHANG Qi, LIU Haisang. Low-damage preparation of extracorporeal membrane oxygenation warp knit membrane fabrics with adaptive tension [J]. Journal of Textile Research, 2024, 45(07): 1-9.
[13] XU Jiahui, GUO Xiaoqing, WANG Wei, WANG Huaifang, ZHANG Chuanjie, GONG Zhaoqing. Preparation of alginate nano montmorillonite modified fiber and its strengthening and toughening mechanisms [J]. Journal of Textile Research, 2024, 45(06): 16-22.
[14] WANG Yipin, LI Xiaohui. Parametric characterization method of clothing fold morphology [J]. Journal of Textile Research, 2024, 45(06): 149-154.
[15] YANG Zhichao, LIU Shuqiang, WU Gaihong, JIA Lu, ZHANG Man, LI Fu, LI Huimin. Research progress in absorbable surgical sutures [J]. Journal of Textile Research, 2024, 45(01): 230-239.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!