Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (09): 36-45.doi: 10.13475/j.fzxb.20250206802
• Academic Salon Column for New Insight of Textiles Science and Technology: Camouflage and Electromagnetic Shielding Technologies and Applications • Previous Articles Next Articles
TANG Chunxia(
), WANG Yifan, MAO Yunshan, LIU Jian, FU Shaohai
CLC Number:
| [7] | ZHANG Hao, WAN Jianbo, WU Ruiqing, et al. MXenes for electromagnetic interference shielding:insights from structural design[J]. Carbon, 2023. DOI:10.1016/j.carbon.2023.118716. |
| [8] | 张恒宇, 张宪胜, 肖红, 等. 二维碳化物在柔性电磁吸波领域的研究进展[J]. 纺织学报, 2020, 41(3):182-187. |
|
ZHANG Hengyu, ZHANG Xiansheng, XIAO Hong, et al. Research progress of two-dimensional carbides in flexible electromagnetic wave absorption[J]. Journal of Textile Research, 2020, 41(3):182-187.
doi: 10.1177/004051757104100216 |
|
| [9] | 古今, 章伟伟, 关丽涛, 等. 纤维素纳米材料技术标准体系研究[J]. 华南农业大学学报, 2018, 39(4):120-124. |
| GU Jin, ZHANG Weiwei, GUAN Litao, et al. Research on technical standard system of cellulose nano-materials[J]. Journal of South China Agricultural University, 2018, 39(4):120-124. | |
| [10] | 卿彦, 蔡智勇, 吴义强, 等. 纤维素纳米纤丝研究进展[J]. 林业科学, 2012, 48(7):145-152. |
| QING Yan, CAI Zhiyong, WU Yiqiang, et al. Study progress on cellulose nanofibril[J]. Scientia Silvae Sinicae, 2012, 48(7):145-152. | |
| [11] |
SHI Yang, WU Mingjun, GE Shengbo, et al. Advanced functional electromagnetic shielding materials: a review based on micro-nano structure interface control of biomass cell walls[J]. Nano-Micro Letters, 2024, 17(1):3.
doi: 10.1007/s40820-024-01494-2 pmid: 39302510 |
| [12] | NAN Ze, WEI Wei, LIN Zhenhua, et al. Flexible electromagnetic interference shields:materials,structure and multifunctionalization[J]. Materials Science and Engineering:Reports, 2024. DOI:10.1016/j.mser.2024.100823. |
| [13] |
YAO Zhenhao, SONG Jianan, LU Yin, et al. Construction of brick/mortar-like graphene/thermoset composites with highly anisotropic thermal conductivity and strong electromagnetic interference shielding performance[J]. Journal of Materials Chemistry A, 2024, 12(15):9113-9123.
doi: 10.1039/D4TA00385C |
| [14] |
JIA Hui, YANG Xiao, KONG Qingqiang, et al. Free-standing,anti-corrosion,super flexible graphene oxide/silver nanowire thin films for ultra-wideband electromagnetic interference shielding[J]. Journal of Materials Chemistry A, 2020, 9(2):1180-1191.
doi: 10.1039/D0TA09246K |
| [15] | XIONG Chuanyin, WANG Tianxu, ZHOU Linfei, et al. Fabrication of dual-function conductive cellulose-based composites with layered conductive network structures for supercapacitors and electromagnetic shielding[J]. Chemical Engineering Journal, 2023. DOI:10.1016/j.cej.2023.144958. |
| [16] | ZHANG Jiancheng, GUO Weijia, SHEN Shunyu, et al. High-compressive, elastic,and wearable cellulose nanofiber-based carbon aerogels for efficient electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2024, 16(13):16612-16621. |
| [17] | QIU Qiu, YUNBO Guo, QI Sun, et al. Studies on preparation and reversed electromagnetic interference shielding behavior from GHz to THz of multifunctional wearable Ni/CP composite[J]. Chemical Engineering Journal, 2024. DOI:10.1016/j.cej.2024.158224. |
| [18] | LI Mengyao, FENG Yujia, WANG Jian. Asymmetric conductive structure design for stabilized composites with absorption dominated ultra-efficient electromagnetic interference shielding performance[J]. Composites Science and Technology, 2023. DOI:10.1016/j.compscitech.2023.110006. |
| [19] | SONG Pan, ZHANG Yong. Vertically aligned carbon nanotubes/graphene/cellulose nanofiber networks for enhancing electrical conductivity and piezoresistivity of silicone rubber composites[J]. Composites Science and Technology, 2022. DOI:10.1016/j.compscitech.2022.109366. |
| [20] | LI Liang, MA Zhiguo, XU Penghui, et al. Flexible and alternant-layered cellulose nanofiber/graphene film with superior thermal conductivity and efficient electromagnetic interference shielding[J]. Composites Part A:Applied Science and Manufacturing, 2020. DOI:10.1016/j.compositesa.2020.106134. |
| [21] | ZHANG Shuai, ZHANG Shuye, ZHU Pengyu, et al. Recent achievements and performance of nanomaterials in microwave absorption and electromagnetic shielding[J]. Advances in Colloid and Interface Science. 2024. DOI:10.1016/j.cis.2024.103336. |
| [22] | ZHAO Hui, WANG Jingfeng, HE Mukun, et al. Electromagnetic interference shielding films:structure design and prospects[J]. Small Methods, 2024.DOI:10.1002/smtd.202401324. |
| [23] | VOHRA Nagma, EL-SHENAWEE Magda. K- and W-band free-space characterizations of highly conductive radar absorbing materials[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 70:1-10. |
| [24] | SHARMA Sahil, PARNE Saidi Reddy, PANDA Saran Srihari Sripada, et al. Progress in microwave absorbing materials:a critical review[J]. Advances in Colloid and Interface Science, 2024. DOI:10.1016/j.cis.2024.103143. |
| [1] | CUI Zhenrong, YANG Minlan, HAN Guanyu, et al. Recent advances in carbon composite films for high-performance,multifunctional and intelligent electromagnetic interference shielding and electromagnetic wave absorption[J]. Carbon, 2024. DOI:10.1016/j.carbon.2024.119627. |
| [2] | ZHENG Shufang, WANG Yuyin, WANG Xuesheng, et al. Research progress on high-performance electromagnetic interference shielding materials with well-organized multilayered structures[J]. Materials Today Physics, 2024. DOI:10.1016/j.mtphys.2024.101330. |
| [3] | ZHOU Meng, YU Zan, YAN Qiming, et al. Asymmetric structural design for absorption-dominated electromagnetic interference shielding composites[J]. Advanced Functional Materials, 2025. DOI:10.1002/adfm.202423884. |
| [4] |
OHAYON Maurice M, STOLC Victor, FREUND Friedemann T, et al. The potential for impact of man-made super low and extremely low frequency electromagnetic fields on sleep[J]. Sleep Medicine Reviews, 2019, 47:28-38.
doi: S1087-0792(19)30007-3 pmid: 31252334 |
| [5] | YANG Qian, GAO Yi, LI Tian, et al. Advances in carbon fiber-based electromagnetic shielding materials:composition,structure,and application[J]. Carbon, 2024. DOI:10.1016/j.carbon.2024.119203. |
| [6] | CHUNG D D L. Materials for electromagnetic interference shielding[J]. Materials Chemistry and Physics, 2020, 9:350-354. |
| [25] |
MEI Nan, WANG Xiaoyu, WANG Xin, et al. Research on Shielding effectiveness calculation method of electromagnetic shielding materials[J]. Solid State Phenomena, 2020, 304:137-141.
doi: 10.4028/www.scientific.net/SSP |
| [26] |
QIN Ming, ZHANG Limin, WU Hongjing. Dielectric loss mechanism in electromagnetic wave absorbing materials[J]. Advanced Science, 2022, 9(10):2105553.
doi: 10.1002/advs.v9.10 |
| [27] |
SINGH Ashish Kumar, SHISHKIN Andrei, KOPPEL Tarmo, et al. A review of porous lightweight composite materials for electromagnetic interference shielding[J]. Composites Part B:Engineering, 2018, 149:188-197.
doi: 10.1016/j.compositesb.2018.05.027 |
| [28] | SONG Shangwei, LI Haitao, LIU Peiwen, et al. Applications of cellulose-based composites and their derivatives for microwave absorption and electromagnetic shielding[J]. Carbohydrate Polymers, 2022. DOI:10.1016/j.carbpol.2022.119347. |
| [29] | LIU Yi, LIU Yuanjun, ZHAO Xiaoming. MXene composite electromagnetic shielding materials: the latest research status[J]. ACS Applied Materials & Interfaces, 2024, 16(31):41596-41615. |
| [30] | WANG Beibei, LI Yanchen, ZHANG Weiye, et al. Ultrathin cellulose nanofiber/carbon nanotube/Ti3C2Tx film for electromagnetic interference shielding and energy storage[J]. Carbohydrate Polymers, 2022. DOI:10.1016/j.carbpol.2022.119302. |
| [31] | CAO Wentao, MA Chang, TAN Shuo, et al. Ultrathin and flexible CNTs/MXene/cellulose nanofibrils composite paper for electromagnetic interference shielding[J]. Nano-Micro Letters, 2019,11:72. |
| [32] |
THOMASSIN Jean-Michel, JÉRÔME Christine, PARDOEN Thomas, et al. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials[J]. Materials Science and Engineering:Reports, 2013, 74(7):211-232.
doi: 10.1016/j.mser.2013.06.001 |
| [33] |
WANG Hao, LI Shaonan, LIU Mengyue, et al. Review on shielding mechanism and structural design of electromagnetic interference shielding composites[J]. Macromolecular Materials and Engineering, 2021, 306(6):2100032.
doi: 10.1002/mame.v306.6 |
| [34] | HASSAN Muhammad Widad, ELSHAZLY Tasneem Mohamed, PONNAMMA Deepalekshmi. Cellulose-inspired approaches to sustainable EMI shielding materials:a comprehensive review[J]. International Journal of Biological Macromolecules, 2024. DOI:10.1016/j.ijbiomac.2024.132920. |
| [35] | SHAO Wenqin, ZHANG Xutao, LIANG Xiao, et al. Cellulose nanofiber-based nanocomposite films with efficient electromagnetic interference shielding and fire-resistant performance[J]. ACS Applied Materials & Interfaces, 2024, 16(32):42674-42686. |
| [36] | LIU Qi, WANG Peilin, ZHANG Wei, et al. Multifunctional wood-derived cellulose/Ti3C2Tx composite films enhanced by densification strategy for electromagnetic shielding,joule/solar heating,and thermal camouflage[J]. Chemical Engineering Journal, 2024. DOI:10.1016/j.cej.2024.152696. |
| [37] | WANG Simin, XIU Huijuan, YIN Dingwen, et al. Constructing grape bunch structure composite film via hollow AaNPs coated cellulose nanofibers (CNF@PDA@H-AgNPs)/CNF for efficient electromagnetic shielding,thermal conductivity,and strain sensing[J]. ACS Applied Materials & Interfaces, 2024, 17(1):2304-2316. |
| [38] |
ISARI Ali Akbar, GHAFFARKHAH Ahmadreza, HASHEMI Seyyed Alireza, et al., Structural design for EMI shielding:from underlying mechanisms to common pitfalls[J]. Advanced Materials, 2024, 36(24):2310683.
doi: 10.1002/adma.v36.24 |
| [39] | HOU Xin, FENG Xuerong, JIANG Ke, et al. Recent progress in smart electromagnetic interference shielding materials[J]. Journal of Materials Science & Technology, 2024, 186:256-271. |
| [40] | MAI Tian, GUO Wenyan, WANG Peilin, et al. Bilayer metal-organic frameworks/MXene/nanocellulose paper with electromagnetic double loss for absorption-dominated electromagnetic interference shielding[J]. Chemical Engineering Journal, 2023. DOI:10.1016/j.cej.2023.142517. |
| [41] |
ZHANG Xianlong, XU Yang, ZHANG Xuan, et al. Progress on the layer-by-layer assembly of multilayered polymer composites:strategy,structural control and applications[J]. Progress in Polymer Science, 2019, 89:76-107.
doi: 10.1016/j.progpolymsci.2018.10.002 |
| [42] | WANG Zheng, LI Shbo, YANG Xiao, et al. Towards wearable multifunctional cellulose nanofiber/silver nanowire/graphene oxide film:electromagnetic protection,antibacterial,and motion monitoring[J]. Chemical Engineering Journal, 2024. DOI:10.1016/j.cej.2024.157751. |
| [43] | GUO Zhengzheng, ZHAO Yidan, LUO Peien, et al. Asymmetric and mechanically enhanced MOF derived magnetic carbon-MXene/cellulose nanofiber films for electromagnetic interference shielding and electrothermal/photothermal conversion[J]. Chemical Engineering Journal, 2024. DOI:10.1016/j.cej.2024.155707. |
| [44] |
YANG Song, DU Maofei, ZHANG Ying, et al. A symmetric gradient structure enables robust CNF/FeCo/LM composite films with excellent electromagnetic interference shielding and electrical insulation[J]. Journal of Materials Chemistry A, 2025, 13(8):5744-5757.
doi: 10.1039/D4TA08680E |
| [45] |
MAI Tian, CHEN Lei, WANG Peilin, et al. Hollow metal-organic framework/MXene/nanocellulose composite films for giga/terahertz electromagnetic shielding and photothermal conversion[J]. Nano-Micro Letters, 2024, 16(1):169.
doi: 10.1007/s40820-024-01386-5 pmid: 38587615 |
| [46] | HU Guirong, WU Changmei, WANG Qian, et al. Ultrathin nanocomposite films with asymmetric gradient alternating multilayer structures exhibit superhigh electromagnetic interference shielding performances and robust mechanical properties[J]. Chemical Engineering Journal, 2022.DOI:10.1016/j.cej.2022.137537. |
| [47] | GUO Zhengzheng, ZHAO Yidan, LUO Peien, et al. Durable and sustainable CoFe2O4@MXene-silver nanowires/cellulose nanofibers composite films with controllable electric-magnetic gradient towards high-efficiency electromagnetic interference shielding and Joule heating capacity[J]. Chemical Engineering Journal, 2024. DOI:10.1016/j.cej.2024.149691. |
| [48] |
ZHAO Yao, MIAO Baoji, NAWAZ Muhammad Asif, et al. Construction of cellulose nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers with gradient structure for efficient electromagnetic interference shielding[J]. Advanced Composites and Hybrid Materials, 2024, 7(2):34.
doi: 10.1007/s42114-024-00839-0 |
| [49] |
MA Zhengkun, HE Jingzong, LIU Shilin, et al. Gradient layered MXene/Fe3O4@CNTs/TOCNF ultrathin nanocomposite paper exhibiting effective electromagnetic shielding and multifunctionality[J]. Nano Research, 2024, 17(9):8233-8242.
doi: 10.1007/s12274-024-6824-x |
| [50] | LUO Chenglong, HUANG Minglu, SUN Chang, et al. Anisotropic electromagnetic wave shielding performance in Janus cellulose nanofiber composite films[J]. Materials Today Physics, 2024.DOI:10.1016/j.mtphys.2024.101440. |
| [51] |
YIN Fangming, LIN Husitu, WANG Wenzhuang, et al. Multifunctional anisotropic aerogels for intelligent electromagnetic wave absorption[J]. Advanced Functional Materials, 2024, 35(14):2418257.
doi: 10.1002/adfm.v35.14 |
| [52] |
ZHANG Qiancheng, DU Zuojuan, HOU Mingming, et al. Ultralight,anisotropic,and self-supported graphene/MWCNT aerogel with high-performance microwave absorption[J]. Carbon, 2022, 188:442-452.
doi: 10.1016/j.carbon.2021.11.047 |
| [53] | MA Chang, MAI Tian, WANG Peilin, et al. Flexible MXene/nanocellulose composite aerogel film with cellular structure for electromagnetic interference shielding and photothermal conversion[J]. ACS Applied Materials & Interfaces, 2023, 15(40):142517. |
| [54] | ZHU Ge, GIRALDO ISAZA Laura, HUANG Bai, et al. Multifunctional nanocellulose/carbon nanotube composite aerogels for high-efficiency electromagnetic interference shielding[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(7):2397-2408. |
| [55] |
ZHOU Jin, SUI Yiling, WU Na, et al. Recent advances in MXene-based aerogels for electromagnetic wave absorption[J]. Small, 2024, 20(49):2405968.
doi: 10.1002/smll.v20.49 |
| [56] |
ZENG Zhihui, WU Tingting, HAN Daxin, et al. Ultralight,flexible,and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding[J]. ACS Nano, 2020, 14(3):2927-2938.
doi: 10.1021/acsnano.9b07452 pmid: 32109050 |
| [57] |
ZHANG Guanhua, WANG Haipeng, XIE Wei, et al. Advancements in 3D-printed architectures for electromagnetic interference shields[J]. Journal of Materials Chemistry A, 2024, 12(10):5581-5605.
doi: 10.1039/D3TA07181B |
| [58] | WANG Lizhi, ZUO Tongcheng, YU Dan, et al. Fe3O4@CNTs/WPU@CNF aerogel/Ag foam composites with a double-layer structure for absorption-dominated electromagnetic shielding performance[J]. Journal of Alloys and Compounds, 2024. DOI:10.1016/j.jallcom.2024.175170. |
| [59] |
TIAN Mai, LEI Chen, QI Liu, et al. Zeolitic imidazolate frameworks derived magnetic nanocage/MXene/nanocellulose bilayer aerogels for low reflection electromagnetic interference shielding and light-to-heat conversion[J]. Advanced Functional Materials, 2024, 35(13):2417947.
doi: 10.1002/adfm.v35.13 |
| [60] | MA Meng, LIAO Yan, LIN Hao, et al. Double-layer of CNF/rGO film and CNF/rGO/FeCo-LDO aerogel structured composites for efficient electromagnetic interference shielding[J]. Carbon, 2024. DOI:10.1016/j.carbon.2024.118863. |
| [61] |
TANG Chunxia, YANG Jing, LIU Jian, et al. A scalable,efficient,and facile ambient drying approach for preparing low shrinkage,compressive,and superporous nano-cellulose-based aerogels via a physicochemical crosslinking strategy[J]. Green Chemistry, 2025, 27(3):804-814.
doi: 10.1039/D4GC05106H |
| [62] | WEI Zijian, CHENG Yu, HU Xuxu, et al. Cellulose-derived carbon scaffolds with bidirectional gradient Fe3O4 distribution:integration of green EMI shielding and thermal management[J]. International Journal of Biological Macromolecules, 2024.DOI:10.1016/j.ijbiomac.2024.133724. |
| [63] | MAO Yunshan, SHENG Yuhao, FAN Zheyu, et al. Atmospheric pressure dried discontinuous pore gradient structured CNF-based aerogel for ultra-low reflection,broadband,and super-high EMI shielding[J]. Advanced Functional Materials, 2025. DOI:10.1002/adfm.202421492. |
| [1] | WANG Wei, GAO Jiannan, PEI Xiaohan, LU Xin, SUN Yinyin, WU Jianbing. Fabrication and oil-water separation efficiency of cellulose/methyltrimethoxysilane aerogel [J]. Journal of Textile Research, 2025, 46(05): 135-142. |
| [2] | LI Run, CHANG Ziyang, ZHANG Rufan. Review of controlled synthesis and performance regulation of functional carbon nanotube fibers [J]. Journal of Textile Research, 2025, 46(05): 30-40. |
| [3] | CHEN Xiao, ZHAO Jizhong, DONG Kai. Strategies for enhancing performance of novel mechano-electric conversion fibers based on contact electrification effect [J]. Journal of Textile Research, 2025, 46(05): 41-48. |
| [4] | ZHU Xue, QIAN Xin, HAO Mengyuan, ZHANG Yonggang. Preparation and electromagnetic shielding performance of MXene/carbon nanofiber membranes by electrospinning/electrophoretic deposition [J]. Journal of Textile Research, 2025, 46(01): 1-8. |
| [5] | YAO Sihong, DONG Zhijia, JIANG Gaoming, WANG Ernan. Structure design and modeling of zero-cut warp knitted fully-formed lapel T-shirt [J]. Journal of Textile Research, 2024, 45(11): 178-184. |
| [6] | CHEN Yushan, JIANG Gaoming, LI Bingxian. Three-dimensional simulation of weft-knitted tubular seamless fabric based on welt tucks [J]. Journal of Textile Research, 2024, 45(10): 95-102. |
| [7] | LIU Xin, WANG Chan, DOU Hao, MENG Jiaguang, CHEN Li, FAN Wei. Preparation and properties of waste cotton/cellulose nanofiber self-reinforcing composite paper [J]. Journal of Textile Research, 2024, 45(06): 39-45. |
| [8] | FANG Jin, ZHANG Guangzhi, XU Zhenzhen. Research progress in applied research on click chemistry for preparation of functional textiles [J]. Journal of Textile Research, 2024, 45(03): 227-235. |
| [9] | DONG Zhijia, GUO Yanyuqiu, LIU Haisang, YAO Sihong. Structural design and realization of warp-knitted fully formed hollow maillot [J]. Journal of Textile Research, 2023, 44(12): 130-137. |
| [10] | ZHENG Xianhong, TANG Jinhao, LI Changlong, WANG Wei. Preparation and electromagnetic shielding performance of hollow magnetic Fe3O4 nanosphere/MXene composite cotton fabrics [J]. Journal of Textile Research, 2023, 44(11): 142-150. |
| [11] | LI Jiao, CHEN Li, YAO Tianlei, CHEN Xiaoming. Design of needling robot system for quasi-rotary preforms [J]. Journal of Textile Research, 2023, 44(07): 207-213. |
| [12] | LÜ Junwei, LUO Longbo, LIU Xiangyang. Advances in design and fabrication of aramid fiber's surface and interface structure based on direct fluorination [J]. Journal of Textile Research, 2023, 44(06): 21-27. |
| [13] | YANG Honglin, XIANG Wei, DONG Shuxiu. Preparation and electromagnetic shielding properties of polyester fabric based nano-copper/reduced graphene oxide composites [J]. Journal of Textile Research, 2022, 43(08): 107-112. |
| [14] | ZOU Lihua, YANG Li, LAN Chuntao, RUAN Fangtao, XU Zhenzhen. Electromagnetic shielding properties of graphene oxide/polypyrrole coated cotton fabric with layer-by-layer assembling method [J]. Journal of Textile Research, 2021, 42(12): 111-118. |
| [15] | RONG Kai, FAN Wei, WANG Qi, ZHANG Cong, YU Yang. Application progress of two-dimensional transitional metal carbon/nitrogen compound composite in field of intelligent wearable textiles [J]. Journal of Textile Research, 2021, 42(09): 10-16. |
|
||