Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (11): 238-246.doi: 10.13475/j.fzxb.20250301702

• Comprehensive Review • Previous Articles     Next Articles

Research progress in high modulus para-aramid fibers

YUAN Ying1, TENG Fengdong1, CAO Yutong2, YU Junrong1(), LI Na1, HU Zuming1, WANG Yan1   

  1. 1. State Key Laboratory for Advanced Fiber Materials, Donghua University, Shanghai 201620, China
    2. Sinochem High Performance Fiber Materials Co., Ltd., Yangzhou, Jiangsu 211417, China
  • Received:2025-03-10 Revised:2025-08-11 Online:2025-11-15 Published:2025-11-15
  • Contact: YU Junrong E-mail:yjr@dhu.edu.cn

Abstract:

Significance As a critical strategic material for aerospace, personal protection, and other cutting-edge applications, structural failures in para-aramid products could trigger significant safety hazards and economic risks. Given the escalating operational demands on the comprehensive performance of para-aramid fibers in practical applications, transcending conventional processing limitations to achieve autonomous production of high-modulus para-aramid fibers has emerged as a pivotal challenge in advanced fiber technology sector. This study conducts in-depth analysis of the structure-property relationships between multiscale structural configurations and macroscopic performance, while systematically reviewing the developmental trajectory of high-modulus para-aramid preparation technologies. The review aims to establish theoretical foundations for optimizing heat treatment processes and developing novel modification approaches, thereby addressing industrial technical bottlenecks and enhancing the competitiveness of domestically produced high-modulus para-aramid fibers in premium application sectors. +++Progress The heat treatment process of para-aramid fibers involves synergistic control of temperature, tension, and time to rapidly remove internal moisture while strengthening hydrogen bonding between molecular chains, thereby significantly improving fiber modulus. However, this process relies on high-temperature and high-tension conditions, which not only increase the risk of molecular chain breakage but also impose stringent requirements on equipment precision and stability. In order to further enhance the modulus of para-aramid fibers, researchers have proposed various modification strategies centered on molecular structure design and processing innovations, each with distinct advantages yet facing practical challenges. In the field of spinning dope modification, the use of high-molecular-weight para-aramid resin effectively broadens the liquid crystal phase temperature range, enabling highly ordered molecular chain alignment and laying the foundation for constructing high-crystallinity, high-modulus para-aramid fibers. However, challenges arise in controlling the solubility of high-molecular-weight resin and the stability of the spinning dope, leading to increased filament breakage during spinning. Supercritical carbon dioxide modification technology leverages its strong small-molecule permeability to penetrate the amorphous regions of fibers, achieving densification and reorganization for significant modulus enhancement. However, this technique requires maintaining high-pressure and high-temperature supercritical conditions, with equipment costs and safety risks posing barriers to industrialization. Surface chemical coating modification directly enhances fiber mechanical properties by introducing rigid interfacial layers, offering a simple process compatible with existing production lines. However, the chemical inertness of para-aramid surfaces results in insufficient coating adhesion strength, often causing interfacial delamination during practical use. Nanoparticle composite modification utilizes the size effects of nanomaterials to form reinforcing phases within fibers. Yet, the stringent requirement for uniform nanoparticle dispersion leads to particle agglomeration in production, creating structural defects. Molecular crosslinking strategies enhance intermolecular interactions by constructing covalent bond networks, providing a novel approach to simultaneously improve strength and modulus. However, the high stability of para-aramid molecular chains makes selective crosslinking difficult, and byproduct accumulation may compromise fiber structural uniformity. Existing modification technologies, such as molecular alignment optimization and amorphous region restructuring, enhance para-aramid modulus. Additionally, studies combining emerging methods for synergistic performance optimization have diversified technical pathways for large-scale production of high-modulus para-aramid fibers, demonstrating broad prospects for engineering applications. +++Conclusion and Prospect The research on high-modulus para-aramid fibers holds strategic significance and technical urgency. By adjusting parameters such as temperature and tension, efficient and stable heat treatment processes can be achieved, laying a solid engineering foundation for the industrial production of high-modulus para-aramid fibers. However, significant challenges remain. On the one hand, there is a need to develop high-throughput, high-precision continuous spinning equipment to reduce production costs for high-quality para-aramid fibers, and on the other hand, innovative modification methods must be explored. While current para-aramid fiber modification technologies have achieved breakthroughs in principle, practical engineering applications still face multiple contradictions involving process complexity, cost control, and performance balance. Future technological development should integrate molecular-scale design innovations with macro-process compatibility. Key priorities include deepening research on fiber structures, establishing quantifiable modulus design models, and exploring comprehensive solutions that balance performance enhancement, production efficiency, and cost control to support China's self-reliance in advanced composite materials. Moreover, in today's rapidly evolving technological landscape, efforts should expand the multifunctional dimensions of high-modulus para-aramid fibers. This involves developing next-generation fiber materials that combine ultra-high modulus, extreme environment resistance, and intelligent responsiveness, thereby driving applications in emerging fields such as smart sensing and electromagnetic shielding.

Key words: high-performance fiber, high-modulus para-aramid fiber, fiber structure, modulus, heat treatment, fiber modification

CLC Number: 

  • TB321.3

Fig.1

Main application fields of para-aramid fibers"

[1] 同黎娜. 国产芳纶或迎“调整期”[N]. 中国纺织报, 2024-8-5(3).
TONG Lina. Domestic aramid fibers may enter an ″adjustment period″[N]. China Textile News, 2024-8-5(3).
[2] 孙晓婷, 郭亚. 芳纶纤维的研究现状及应用[J]. 成都纺织高等专科学校学报, 2016, 33(3): 164-168.
SUN Xiaoting, GUO Ya. Research status and application of aramid fiber[J]. Journal of Chengdu Textile College, 2016, 33(3): 164-168.
[3] 孔海娟, 张蕊, 周建军, 等. 芳纶纤维的研究现状与进展[J]. 中国材料进展, 2013, 32(11): 676-684.
KONG Haijuan, ZHANG Rui, ZHOU Jianjun, et al. The research status and progress of aramid fibers[J]. Materials China, 2013, 32(11): 676-684.
[4] PATEL A, WILCOX K, LI Z, et al. High modulus, thermally stable, and self-extinguishing aramid nanofiber separators[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 25756-25766.
[5] 邱召明, 刘晓丽, 王忠伟, 等. 对位芳纶在复合材料领域的应用[J]. 高科技纤维与应用, 2016, 41(6): 31-34.
QIU Zhaoming, LIU Xiaoli, WANG Zhongwei, et al. The application of para-aramid fiber in composite material[J]. Hi-Tech Fiber & Application, 2016, 41(6): 31-34.
[6] 魏枫, 裴勇勇, 徐海兵, 等. 芳香族聚酰胺纤维抗紫外老化的研究进展[J]. 复合材料科学与工程, 2022(6):115-121.
doi: 10.19936/j.cnki.2096-8000.20220628.018
WEI Feng, PEI Yongyong, XU Haibing, et al. Research progress on anti-ultraviolet aging of aromatic polyamide fibers[J]. Composites Science and Engineering, 2022(6): 115-121.
doi: 10.19936/j.cnki.2096-8000.20220628.018
[7] 吕钧炜, 罗龙波, 刘向阳. 基于直接氟化技术的芳纶表/界面结构设计与制备研究进展[J]. 纺织学报, 2023, 44(6): 21-27.
LÜ Junwei, LUO Longbo, LIU Xiangyang. Advances in design and fabrication of aramid fiber's surface and interface structure based on direct fluorination[J]. Journal of Textile Research, 2023, 44(6): 21-27.
doi: 10.1177/004051757404400104
[8] LEE D, CHO J, SON J G, et al. Highly aligned aramid nanofibrillar nanocomposites for enhanced dynamic mechanical properties[J]. Composites Part B: Engineering, 2022, 229: 109467.
doi: 10.1016/j.compositesb.2021.109467
[9] ZHAI L S, HUANG Z Y, LUO Y X, et al. Decorating aramid fibers with chemically-bonded amorphous TiO2 for improving UV resistance in the simulated extreme environment[J]. Chemical Engineering Journal, 2022, 440: 135724.
doi: 10.1016/j.cej.2022.135724
[10] ZHANG B, JIA L H, TIAN M, et al. Surface and interface modification of aramid fiber and its reinforcement for polymer composites: a review[J]. European Polymer Journal, 2021, 147: 110352.
doi: 10.1016/j.eurpolymj.2021.110352
[11] 管宝琼, 许登堡. 高强度高模量芳纶的结构、性能及其应用[J]. 合成纤维, 1990, 19(5): 41-45.
GUAN Baoqiong, XU Dengbao. Structure, properties and application of high strength and high modulus aramid fiber[J]. Synthetic Fiber in China, 1990, 19(5): 41-45.
[12] 李明专, 王军, 鲁圣军, 等. 芳纶纤维的研究现状及功能化应用进展[J]. 高分子通报, 2018,(1): 58-69.
LI Mingzhuan, WANG Jun, LU Shengjun, et al. Research status and progress in functional applications of aramid fibers[J]. Polymer Bulletin, 2018,(1):58-69.
[13] 刘震, 孙宇, 林威宏, 等. 国产对位芳纶研发进展[J]. 合成纤维, 2019, 48(1): 21-24.
LIU Zhen, SUN Yu, LIN Weihong, et al. Progress on research and development of domestic para-aramid fiber[J]. China Synthetic Fiber Industry, 2019, 48(1): 21-24.
[14] 杨拯, 吴清基, 顾锦江. 高粘度PPTA纺丝工艺研究[J]. 高科技纤维与应用, 2010, 35(2): 10-12,15.
YANG Zheng, WU Qingji, GU Jinjiang. Research on high-viscosity PPTA spinning process[J]. Hi-Tech Fiber & Application, 2010, 35(2): 10-12,15.
[15] YANG C, WU H, DAI Y, et al. Constructing mainstay-body structure in heterocyclic aramid fiber to simultaneously improve tensile strength and tough-ness[J]. Composites Part B: Engineering, 2020, 202: 108411.
doi: 10.1016/j.compositesb.2020.108411
[16] 梁园, 周铃人, 刘娜, 等. 对位芳纶纺丝成形工艺研究[J]. 合成纤维, 2023, 52(1): 9-12.
LIANG Yuan, ZHOU Lingren, LIU Na, et al. Researchon spinning and forming process of para-aramid fibers[J]. Synthetic Fiber in China, 2023, 52(1): 9-12.
[17] ROENBECK M R, SANDOZ-ROSADO E J, CLINE J, et al. Probing the internal structures of Kevlar ® fibers and their impacts on mechanical performance[J]. Polymer, 2017, 128: 200-210.
doi: 10.1016/j.polymer.2017.09.039
[18] WANG B, MAO Z B, LI D Y, et al. Multiscale insights into the stretching behavior of Kevlar fiber[J]. Computational Materials Science, 2020, 185: 109957.
doi: 10.1016/j.commatsci.2020.109957
[19] LI H, XIAO R. Glass transition behavior of wet polymers[J]. Materials, 2021, 14(4): 730.
doi: 10.3390/ma14040730
[20] 周琴, 李杨, 林昆杰, 等. 热处理温度对对位芳纶纤维表面聚集态结构和性能影响[J]. 工程塑料应用, 2021, 49(2): 117-122,135.
ZHOU Qin, LI Yang, LIN Kunjie, et al. Effects of heat treatment temperature on the surface aggregation structure and properties of para-aramid fibers[J]. Engineering Plastics Application, 2021, 49(2): 117-122,135.
[21] 杨斌, 张美云, 李涛, 等. FT-IR分析芳纶纸基纤维氢键结构[J]. 纸和造纸, 2011, 30(12): 47-50.
YANG Bin, ZHANG Meiyun, LI Tao, et al. FT-IR analysis of hydrogen bond structure in aramid paper fibers[J]. Paper and Papermaking, 2011, 30(12): 47-50.
[22] 孔海娟, 柴进, 孙卉, 等. 芳纶热拉伸处理过程对氢键影响的研究[J]. 合成纤维, 2019, 48(4): 30-33,55.
KONG Haijuan, CHAI Jin, SUN Hui, et al. Study on the effect of heat stretching process on hydrogenbonds in aramid fibers[J]. Synthetic Fiber in China, 2019, 48(4): 30-33, 55.
[23] 严冬东. 对位芳纶热处理及纤维的结构与性能研究[D]. 上海: 东华大学, 2014: 26-42.
YAN Dongdong. Study on the thermal treatment and the structure and performance of para-aramid fibers[D]. Shanghai: Donghua University, 2014: 26-42.
[24] LIU K J, LIANG J S, MAO M, et al. Study on continuous heat treatment of aramid III[J]. Journal of Engineered Fibers and Fabrics, 2022, 17: 15589250221096151.
[25] 顾灏, 刘静, 李会, 等. 热处理对国产对位芳纶AFS-920结构与性能的影响[J]. 合成纤维, 2016, 45(2): 40-44.
GU Hao, LIU Jing, LI Hui, et al. Effect of thermal treatment on the structure and properties of domestic para-aramid fiber AFS-920[J]. Synthetic Fiber Industry, 2016, 45(2): 40-44.
[26] 邱峻, 潘婉莲. PBO纤维表面改性与热处理研究[J]. 合成纤维, 2008, 1: 14-17.
QIU Jun, PAN Wanlian. Surface modification and thermal treatment of PBO fibers[J]. Synthetic Fiber, 2008, 1: 14-17.
[27] 孔海娟, 叶盛, 刘静, 等. 超高相对分子质量PPTA树脂及其高模量芳纶的研究[J]. 高科技纤维与应用, 2014, 39(3): 15-20+31.
KONG Haijuan, YE Sheng, LIU Jing, et al. Researchon ultra-high molecular weight PPTA resin and high-modulus aramid fibers[J]. Hi-Tech Fiber & Application, 2014, 39(3): 15-20+31.
[28] TENG C Q, LI H, LIU J, et al. Effect of high molecular weight PPTA on liquid crystalline phase and spinning process of aramid fibers[J]. Polymers, 2020, 12(5): 1206.
doi: 10.3390/polym12051206
[29] 刘岩冰, 熊铭强, 张金丰, 等. 超临界CO2在化工领域的研究进展[J]. 节能技术, 2022, 40(5): 403-408.
LIU Yanbing, XIONG Mingqiang, ZHANG Jinfeng, et al. Research progress of supercritical CO2 in the chemical engineering field[J]. Energy Conservation Technology, 2022, 40(5): 403-408.
[30] KONG H J, TENG C Q, LIU X D, et al. Simultaneously improving the tensile strength and modulus of aramid fiber by enhancing amorphous phase in supercritical carbon dioxide[J]. RSC Advances, 2014, 4(39): 20599-20604.
doi: 10.1039/C4RA00801D
[31] JIA C Y, YUAN C C, MA Z Y, et al. Improving the mechanical and surface properties of aramid fiber by grafting with 1, 4-dichlorobutane under supercritical carbon dioxide[J]. Materials, 2019, 12(22): 3766.
doi: 10.3390/ma12223766
[32] DING X M, KONG H J, QIAO M M, et al. Effect of different pressures on microstructure and mechanical performance of F-III fibers in supercritical carbon dioxide fluid[J]. Materials, 2019, 12(5): 690.
doi: 10.3390/ma12050690
[33] ZHANG Z L, ZHAO Y, LI H Q, et al. Nanoparticle-infused UHMWPE layer as multifunctional coating for high-performance PPTA single fibers[J]. Scientific Reports, 2019, 9(1): 7183.
doi: 10.1038/s41598-019-43629-1 pmid: 31073159
[34] 吴俊雄, 尉霞, 罗璟娴, 等. 阻燃腈纶/芳纶包芯纱的制备及其紫外光稳定性[J]. 纺织学报, 2023, 44(3): 60-66.
WU Junxiong, WEI Xia, LUO Jingxian, et al. Preparation of flame-retardant acrylic/aramid core-spun yarn and its ultraviolet light stability[J]. Journal of Textile Research, 2023, 44(3): 60-66.
[35] SONI S K, THOMAS B, KAR V R. A comprehensive review on CNTs and CNT-reinforced composites: syntheses, characteristics and applications[J]. Materials Today Communications, 2020, 25: 101546.
doi: 10.1016/j.mtcomm.2020.101546
[36] 赵振全, 商春航, 张乐, 等. 高性能碳纳米管复合纤维的研究进展[J]. 东华大学学报(自然科学版), 2024, 50(4): 163-182.
ZHAO Zhenquan, SHANG Chunhang, ZHANG Le, etal. Research progress on high-performance carbon nanotube composite fibers[J]. Journal of Donghua University (Natural Science Edition), 2024, 50(4): 163-182.
[37] O'CONNOR I, HAYDEN H, COLEMAN J N, et al. High-strength, high-toughness composite fibers by swelling Kevlar in nanotube suspensions[J]. Small, 2009, 5(4): 466-469.
doi: 10.1002/smll.200801102 pmid: 19189328
[38] SHEBANOV S M, NOVIKOV I K, GUMARGALIEVA K Z, et al. Increasing the strength of single filaments and yarns of a paraaramid fiber by their processing with an aqueous suspension of carbon nanoparticles[J]. Mechanics of Composite Materials, 2017, 53(2): 267-270.
doi: 10.1007/s11029-017-9659-7
[39] 贾笑娅, 王蕊宁, 孙润军. SiO2/聚乙二醇200/碳纳米管剪切增稠液浸渍芳纶织物及其复合材料防刺性能[J]. 纺织学报, 2024, 45(4): 151-159.
JIA Xiaoya, WANG Ruining, SUN Runjun. Stab-resistant performance of aramid fabric and its composites impregnated with shear-thickening fluid of SiO2/polyethylene glycol 200/carbon nanotubes[J]. Journal of Textile Research, 2024, 45(4): 151-159.
[40] ZOU J, ZHANG Y C, WU H Y, et al. Nano effects of helium plasma treatment nano SiO2 coating kevlar filaments[J]. Materials Science Forum, 2009, 610/611/612/613: 692-699.
[41] 楚艳艳, 李施辰, 陈超, 等. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212.
doi: 10.13475/j.fzxb.20210607910
CHU Yanyan, LI Shichen, CHEN Chao, et al. Research progress on flexible impact-resistant textile materials and their structures[J]. Journal of Textile Research, 2022, 43(12): 203-212.
doi: 10.13475/j.fzxb.20210607910
[42] E S F, MA Q, NING D D, et al. Bio-inspired covalent crosslink of aramid nanofibers film for improved mechanical performances[J]. Composites Science and Technology, 2021, 201: 108514.
doi: 10.1016/j.compscitech.2020.108514
[43] DAI Y, MENG C B, CHENG Z, et al. Nondestructive modification of aramid fiber based on selective reaction of external cross-linker to improve interfacial shear strength and compressive strength[J]. Composites Part A: Applied Science and Manufacturing, 2019, 119: 217-224.
doi: 10.1016/j.compositesa.2019.02.007
[44] 黄钧铭, 于游江, 王忠伟, 等. 对位芳纶应用领域技术标准现状与发展[J]. 高科技纤维与应用, 2016, 41(3):38-45.
HUANG Junming, YU Youjiang, WANG Zhongwei, et al. Current status and development of technical standards for the application fields of para-aramid[J]. High-Tech Fibers and Applications, 2016, 41(3): 38-45.
[45] 张玮, 刘姝瑞, 张明宇, 等. 芳纶纤维的发展现状及应用[J]. 纺织科学与工程学报, 2024, 41(1): 86-94.
ZHANG Wei, LIU Shurui, ZHANG Mingyu, et al. Current development and applications of aramid fibers[J]. Journal of Textile Science and Engineering, 2024, 41(1): 86-94.
[46] 白荣光, 李洪, 窦晓勇, 等. 我国芳纶1414产业现状及其发展方向[J]. 产业用纺织品, 2016, 34(7): 1-4.
BAI Rongguang, LI Hong, DOU Xiaoyong, et al. Current status and development direction of aramid 1414 industry in China[J]. Industrial Textiles, 2016, 34(7): 1-4.
[47] 程强. 高性能纤维产业现状与未来[N]. 中国石化报, 2024-12-11(5).
CEHNG Qiang. Current status and future of the high-performance fiber industry[N]. China Petroleum News, 2024-12-11(5).
[48] NASSER J, STEINKE K, GROO L, et al. Improved interyarn friction, impact response, and stab resistance of surface fibrilized aramid fabric[J]. Advanced Materials Interfaces, 2019, 6(19): 1900881.
doi: 10.1002/admi.v6.19
[49] JUNG J, SODANO H A. Aramid nanofiber reinforced rubber compounds for the application of tire tread with high abrasion resistance and fuel saving efficiency[J]. ACS Applied Polymer Materials, 2020, 2(11): 4874-4884.
doi: 10.1021/acsapm.0c00797
[1] SUN Yanyan, ZHANG Shitao, LIU Heng, LI Mingyuan, CAI Zhengguo, SUN Junfen, CHEN Long. Preparation of polypropylene/polybutylene terephthalate blend fibers and their rheological and thermal properties [J]. Journal of Textile Research, 2025, 46(10): 11-18.
[2] GAO Wenyu, CHEN Cheng, XI Xiaowei, DENG Linhong, LIU Yang. Preparation and properties of collagen-based corneal repair materials reinforced with modified silk protein fibers [J]. Journal of Textile Research, 2025, 46(08): 1-9.
[3] WANG Biao, LI Yuan, DONG Jie, ZHANG Qinghua. Influences of stress in thermal imidization on structure and properties of polyimide fibers [J]. Journal of Textile Research, 2025, 46(03): 1-8.
[4] LI Huimin, LIU Shuqiang, DU Linlin, ZHANG Man, WU Gaihong. Parametric modeling of basalt/polyimide three-dimensional spacer woven fabric and numerical simulation of heat transfer in high temperature environment [J]. Journal of Textile Research, 2025, 46(01): 87-94.
[5] MIAO Lulu, MENG Xiaoyi, DONG Zhengmei, PENG Qian, HE Linwei, ZOU Zhuanyong. Effect of heat treatment on mechanical property of core-spun yarn from low melting point polyester filament made by air-jet vortex spinning [J]. Journal of Textile Research, 2024, 45(11): 73-79.
[6] LIU Sitong, JIN Dan, SUN Dongming, LI Yixuan, WANG Yanhui, WANG Jing, WANG Yuan. Research progress of nanofiber structure prepared by electrospinning [J]. Journal of Textile Research, 2024, 45(06): 201-209.
[7] XIANG Yu, ZHOU Aihui, WANG Sixiang, JI Qiao, WEN Xinke, YUAN Jiugang. Analysis of disulfide bonds and conformational content of wool based on Raman spectroscopy [J]. Journal of Textile Research, 2024, 45(02): 45-51.
[8] SHENG Xinyang, CHEN Xiaona, LU Yaya, LI Yanmei, SUN Guangwu. Quantitative relationship between fabric elasticity and shock absorption performance of sports bras [J]. Journal of Textile Research, 2024, 45(01): 161-167.
[9] XIA Liangjun, CAO Genyang, LIU Xin, XU Weilin. Research progress in color construction of high-performance fibers and its products [J]. Journal of Textile Research, 2023, 44(06): 1-9.
[10] CHEN Kang, CHEN Gaofeng, WANG Qun, WANG Gang, ZHANG Yumei, WANG Huaping. Influence of heat-treatment tension in post-processing on structural properties of high modulus low shrinkage industrial polyester fibers [J]. Journal of Textile Research, 2022, 43(10): 10-15.
[11] HE Qi, LI Junling, JIN Gaoling, LIU Jin, KE Fuyou, CHEN Ye, WANG Huaping. Preparation and properties of tetrahydrofuran homopolyether-polybutyleneterephthalate/polyethylene terephthalate parallel composite fiber [J]. Journal of Textile Research, 2022, 43(09): 70-75.
[12] XIAO Qi, WANG Rui, ZHANG Shujie, SUN Hongyu, WANG Jingru. Finite element simulation of pilling of polyester/cotton woven fabrics using ABAQUS [J]. Journal of Textile Research, 2022, 43(06): 70-78.
[13] CHEN Xian, LI Mengmeng, ZHAO Xin, DONG Jie, TENG Cuiqing. Preparation and microstructure control of aerogel fibers based on aramid nanofibers [J]. Journal of Textile Research, 2021, 42(11): 17-23.
[14] WANG Jianming, LI Yongfeng, HAO Xinmin, YAN Jinlong, QIAO Rongrong, WANG Meihui. Study on structure and moisture absorption and liberation properties of bio-based polyamide 56 and polyamide 66 [J]. Journal of Textile Research, 2021, 42(08): 1-7.
[15] ZHENG Sensen, GUO Tao, DONG Jie, WANG Shihua, ZHANG Qinghua. Preparation, structure and properties of high-strength high-modulus polyimide fibers containing benzimidazole moiety [J]. Journal of Textile Research, 2021, 42(02): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!