Journal of Textile Research ›› 2025, Vol. 46 ›› Issue (11): 238-246.doi: 10.13475/j.fzxb.20250301702
• Comprehensive Review • Previous Articles Next Articles
YUAN Ying1, TENG Fengdong1, CAO Yutong2, YU Junrong1(
), LI Na1, HU Zuming1, WANG Yan1
CLC Number:
| [1] | 同黎娜. 国产芳纶或迎“调整期”[N]. 中国纺织报, 2024-8-5(3). |
| TONG Lina. Domestic aramid fibers may enter an ″adjustment period″[N]. China Textile News, 2024-8-5(3). | |
| [2] | 孙晓婷, 郭亚. 芳纶纤维的研究现状及应用[J]. 成都纺织高等专科学校学报, 2016, 33(3): 164-168. |
| SUN Xiaoting, GUO Ya. Research status and application of aramid fiber[J]. Journal of Chengdu Textile College, 2016, 33(3): 164-168. | |
| [3] | 孔海娟, 张蕊, 周建军, 等. 芳纶纤维的研究现状与进展[J]. 中国材料进展, 2013, 32(11): 676-684. |
| KONG Haijuan, ZHANG Rui, ZHOU Jianjun, et al. The research status and progress of aramid fibers[J]. Materials China, 2013, 32(11): 676-684. | |
| [4] | PATEL A, WILCOX K, LI Z, et al. High modulus, thermally stable, and self-extinguishing aramid nanofiber separators[J]. ACS Applied Materials & Interfaces, 2020, 12(23): 25756-25766. |
| [5] | 邱召明, 刘晓丽, 王忠伟, 等. 对位芳纶在复合材料领域的应用[J]. 高科技纤维与应用, 2016, 41(6): 31-34. |
| QIU Zhaoming, LIU Xiaoli, WANG Zhongwei, et al. The application of para-aramid fiber in composite material[J]. Hi-Tech Fiber & Application, 2016, 41(6): 31-34. | |
| [6] |
魏枫, 裴勇勇, 徐海兵, 等. 芳香族聚酰胺纤维抗紫外老化的研究进展[J]. 复合材料科学与工程, 2022(6):115-121.
doi: 10.19936/j.cnki.2096-8000.20220628.018 |
|
WEI Feng, PEI Yongyong, XU Haibing, et al. Research progress on anti-ultraviolet aging of aromatic polyamide fibers[J]. Composites Science and Engineering, 2022(6): 115-121.
doi: 10.19936/j.cnki.2096-8000.20220628.018 |
|
| [7] | 吕钧炜, 罗龙波, 刘向阳. 基于直接氟化技术的芳纶表/界面结构设计与制备研究进展[J]. 纺织学报, 2023, 44(6): 21-27. |
|
LÜ Junwei, LUO Longbo, LIU Xiangyang. Advances in design and fabrication of aramid fiber's surface and interface structure based on direct fluorination[J]. Journal of Textile Research, 2023, 44(6): 21-27.
doi: 10.1177/004051757404400104 |
|
| [8] |
LEE D, CHO J, SON J G, et al. Highly aligned aramid nanofibrillar nanocomposites for enhanced dynamic mechanical properties[J]. Composites Part B: Engineering, 2022, 229: 109467.
doi: 10.1016/j.compositesb.2021.109467 |
| [9] |
ZHAI L S, HUANG Z Y, LUO Y X, et al. Decorating aramid fibers with chemically-bonded amorphous TiO2 for improving UV resistance in the simulated extreme environment[J]. Chemical Engineering Journal, 2022, 440: 135724.
doi: 10.1016/j.cej.2022.135724 |
| [10] |
ZHANG B, JIA L H, TIAN M, et al. Surface and interface modification of aramid fiber and its reinforcement for polymer composites: a review[J]. European Polymer Journal, 2021, 147: 110352.
doi: 10.1016/j.eurpolymj.2021.110352 |
| [11] | 管宝琼, 许登堡. 高强度高模量芳纶的结构、性能及其应用[J]. 合成纤维, 1990, 19(5): 41-45. |
| GUAN Baoqiong, XU Dengbao. Structure, properties and application of high strength and high modulus aramid fiber[J]. Synthetic Fiber in China, 1990, 19(5): 41-45. | |
| [12] | 李明专, 王军, 鲁圣军, 等. 芳纶纤维的研究现状及功能化应用进展[J]. 高分子通报, 2018,(1): 58-69. |
| LI Mingzhuan, WANG Jun, LU Shengjun, et al. Research status and progress in functional applications of aramid fibers[J]. Polymer Bulletin, 2018,(1):58-69. | |
| [13] | 刘震, 孙宇, 林威宏, 等. 国产对位芳纶研发进展[J]. 合成纤维, 2019, 48(1): 21-24. |
| LIU Zhen, SUN Yu, LIN Weihong, et al. Progress on research and development of domestic para-aramid fiber[J]. China Synthetic Fiber Industry, 2019, 48(1): 21-24. | |
| [14] | 杨拯, 吴清基, 顾锦江. 高粘度PPTA纺丝工艺研究[J]. 高科技纤维与应用, 2010, 35(2): 10-12,15. |
| YANG Zheng, WU Qingji, GU Jinjiang. Research on high-viscosity PPTA spinning process[J]. Hi-Tech Fiber & Application, 2010, 35(2): 10-12,15. | |
| [15] |
YANG C, WU H, DAI Y, et al. Constructing mainstay-body structure in heterocyclic aramid fiber to simultaneously improve tensile strength and tough-ness[J]. Composites Part B: Engineering, 2020, 202: 108411.
doi: 10.1016/j.compositesb.2020.108411 |
| [16] | 梁园, 周铃人, 刘娜, 等. 对位芳纶纺丝成形工艺研究[J]. 合成纤维, 2023, 52(1): 9-12. |
| LIANG Yuan, ZHOU Lingren, LIU Na, et al. Researchon spinning and forming process of para-aramid fibers[J]. Synthetic Fiber in China, 2023, 52(1): 9-12. | |
| [17] |
ROENBECK M R, SANDOZ-ROSADO E J, CLINE J, et al. Probing the internal structures of Kevlar ® fibers and their impacts on mechanical performance[J]. Polymer, 2017, 128: 200-210.
doi: 10.1016/j.polymer.2017.09.039 |
| [18] |
WANG B, MAO Z B, LI D Y, et al. Multiscale insights into the stretching behavior of Kevlar fiber[J]. Computational Materials Science, 2020, 185: 109957.
doi: 10.1016/j.commatsci.2020.109957 |
| [19] |
LI H, XIAO R. Glass transition behavior of wet polymers[J]. Materials, 2021, 14(4): 730.
doi: 10.3390/ma14040730 |
| [20] | 周琴, 李杨, 林昆杰, 等. 热处理温度对对位芳纶纤维表面聚集态结构和性能影响[J]. 工程塑料应用, 2021, 49(2): 117-122,135. |
| ZHOU Qin, LI Yang, LIN Kunjie, et al. Effects of heat treatment temperature on the surface aggregation structure and properties of para-aramid fibers[J]. Engineering Plastics Application, 2021, 49(2): 117-122,135. | |
| [21] | 杨斌, 张美云, 李涛, 等. FT-IR分析芳纶纸基纤维氢键结构[J]. 纸和造纸, 2011, 30(12): 47-50. |
| YANG Bin, ZHANG Meiyun, LI Tao, et al. FT-IR analysis of hydrogen bond structure in aramid paper fibers[J]. Paper and Papermaking, 2011, 30(12): 47-50. | |
| [22] | 孔海娟, 柴进, 孙卉, 等. 芳纶热拉伸处理过程对氢键影响的研究[J]. 合成纤维, 2019, 48(4): 30-33,55. |
| KONG Haijuan, CHAI Jin, SUN Hui, et al. Study on the effect of heat stretching process on hydrogenbonds in aramid fibers[J]. Synthetic Fiber in China, 2019, 48(4): 30-33, 55. | |
| [23] | 严冬东. 对位芳纶热处理及纤维的结构与性能研究[D]. 上海: 东华大学, 2014: 26-42. |
| YAN Dongdong. Study on the thermal treatment and the structure and performance of para-aramid fibers[D]. Shanghai: Donghua University, 2014: 26-42. | |
| [24] | LIU K J, LIANG J S, MAO M, et al. Study on continuous heat treatment of aramid III[J]. Journal of Engineered Fibers and Fabrics, 2022, 17: 15589250221096151. |
| [25] | 顾灏, 刘静, 李会, 等. 热处理对国产对位芳纶AFS-920结构与性能的影响[J]. 合成纤维, 2016, 45(2): 40-44. |
| GU Hao, LIU Jing, LI Hui, et al. Effect of thermal treatment on the structure and properties of domestic para-aramid fiber AFS-920[J]. Synthetic Fiber Industry, 2016, 45(2): 40-44. | |
| [26] | 邱峻, 潘婉莲. PBO纤维表面改性与热处理研究[J]. 合成纤维, 2008, 1: 14-17. |
| QIU Jun, PAN Wanlian. Surface modification and thermal treatment of PBO fibers[J]. Synthetic Fiber, 2008, 1: 14-17. | |
| [27] | 孔海娟, 叶盛, 刘静, 等. 超高相对分子质量PPTA树脂及其高模量芳纶的研究[J]. 高科技纤维与应用, 2014, 39(3): 15-20+31. |
| KONG Haijuan, YE Sheng, LIU Jing, et al. Researchon ultra-high molecular weight PPTA resin and high-modulus aramid fibers[J]. Hi-Tech Fiber & Application, 2014, 39(3): 15-20+31. | |
| [28] |
TENG C Q, LI H, LIU J, et al. Effect of high molecular weight PPTA on liquid crystalline phase and spinning process of aramid fibers[J]. Polymers, 2020, 12(5): 1206.
doi: 10.3390/polym12051206 |
| [29] | 刘岩冰, 熊铭强, 张金丰, 等. 超临界CO2在化工领域的研究进展[J]. 节能技术, 2022, 40(5): 403-408. |
| LIU Yanbing, XIONG Mingqiang, ZHANG Jinfeng, et al. Research progress of supercritical CO2 in the chemical engineering field[J]. Energy Conservation Technology, 2022, 40(5): 403-408. | |
| [30] |
KONG H J, TENG C Q, LIU X D, et al. Simultaneously improving the tensile strength and modulus of aramid fiber by enhancing amorphous phase in supercritical carbon dioxide[J]. RSC Advances, 2014, 4(39): 20599-20604.
doi: 10.1039/C4RA00801D |
| [31] |
JIA C Y, YUAN C C, MA Z Y, et al. Improving the mechanical and surface properties of aramid fiber by grafting with 1, 4-dichlorobutane under supercritical carbon dioxide[J]. Materials, 2019, 12(22): 3766.
doi: 10.3390/ma12223766 |
| [32] |
DING X M, KONG H J, QIAO M M, et al. Effect of different pressures on microstructure and mechanical performance of F-III fibers in supercritical carbon dioxide fluid[J]. Materials, 2019, 12(5): 690.
doi: 10.3390/ma12050690 |
| [33] |
ZHANG Z L, ZHAO Y, LI H Q, et al. Nanoparticle-infused UHMWPE layer as multifunctional coating for high-performance PPTA single fibers[J]. Scientific Reports, 2019, 9(1): 7183.
doi: 10.1038/s41598-019-43629-1 pmid: 31073159 |
| [34] | 吴俊雄, 尉霞, 罗璟娴, 等. 阻燃腈纶/芳纶包芯纱的制备及其紫外光稳定性[J]. 纺织学报, 2023, 44(3): 60-66. |
| WU Junxiong, WEI Xia, LUO Jingxian, et al. Preparation of flame-retardant acrylic/aramid core-spun yarn and its ultraviolet light stability[J]. Journal of Textile Research, 2023, 44(3): 60-66. | |
| [35] |
SONI S K, THOMAS B, KAR V R. A comprehensive review on CNTs and CNT-reinforced composites: syntheses, characteristics and applications[J]. Materials Today Communications, 2020, 25: 101546.
doi: 10.1016/j.mtcomm.2020.101546 |
| [36] | 赵振全, 商春航, 张乐, 等. 高性能碳纳米管复合纤维的研究进展[J]. 东华大学学报(自然科学版), 2024, 50(4): 163-182. |
| ZHAO Zhenquan, SHANG Chunhang, ZHANG Le, etal. Research progress on high-performance carbon nanotube composite fibers[J]. Journal of Donghua University (Natural Science Edition), 2024, 50(4): 163-182. | |
| [37] |
O'CONNOR I, HAYDEN H, COLEMAN J N, et al. High-strength, high-toughness composite fibers by swelling Kevlar in nanotube suspensions[J]. Small, 2009, 5(4): 466-469.
doi: 10.1002/smll.200801102 pmid: 19189328 |
| [38] |
SHEBANOV S M, NOVIKOV I K, GUMARGALIEVA K Z, et al. Increasing the strength of single filaments and yarns of a paraaramid fiber by their processing with an aqueous suspension of carbon nanoparticles[J]. Mechanics of Composite Materials, 2017, 53(2): 267-270.
doi: 10.1007/s11029-017-9659-7 |
| [39] | 贾笑娅, 王蕊宁, 孙润军. SiO2/聚乙二醇200/碳纳米管剪切增稠液浸渍芳纶织物及其复合材料防刺性能[J]. 纺织学报, 2024, 45(4): 151-159. |
| JIA Xiaoya, WANG Ruining, SUN Runjun. Stab-resistant performance of aramid fabric and its composites impregnated with shear-thickening fluid of SiO2/polyethylene glycol 200/carbon nanotubes[J]. Journal of Textile Research, 2024, 45(4): 151-159. | |
| [40] | ZOU J, ZHANG Y C, WU H Y, et al. Nano effects of helium plasma treatment nano SiO2 coating kevlar filaments[J]. Materials Science Forum, 2009, 610/611/612/613: 692-699. |
| [41] |
楚艳艳, 李施辰, 陈超, 等. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212.
doi: 10.13475/j.fzxb.20210607910 |
|
CHU Yanyan, LI Shichen, CHEN Chao, et al. Research progress on flexible impact-resistant textile materials and their structures[J]. Journal of Textile Research, 2022, 43(12): 203-212.
doi: 10.13475/j.fzxb.20210607910 |
|
| [42] |
E S F, MA Q, NING D D, et al. Bio-inspired covalent crosslink of aramid nanofibers film for improved mechanical performances[J]. Composites Science and Technology, 2021, 201: 108514.
doi: 10.1016/j.compscitech.2020.108514 |
| [43] |
DAI Y, MENG C B, CHENG Z, et al. Nondestructive modification of aramid fiber based on selective reaction of external cross-linker to improve interfacial shear strength and compressive strength[J]. Composites Part A: Applied Science and Manufacturing, 2019, 119: 217-224.
doi: 10.1016/j.compositesa.2019.02.007 |
| [44] | 黄钧铭, 于游江, 王忠伟, 等. 对位芳纶应用领域技术标准现状与发展[J]. 高科技纤维与应用, 2016, 41(3):38-45. |
| HUANG Junming, YU Youjiang, WANG Zhongwei, et al. Current status and development of technical standards for the application fields of para-aramid[J]. High-Tech Fibers and Applications, 2016, 41(3): 38-45. | |
| [45] | 张玮, 刘姝瑞, 张明宇, 等. 芳纶纤维的发展现状及应用[J]. 纺织科学与工程学报, 2024, 41(1): 86-94. |
| ZHANG Wei, LIU Shurui, ZHANG Mingyu, et al. Current development and applications of aramid fibers[J]. Journal of Textile Science and Engineering, 2024, 41(1): 86-94. | |
| [46] | 白荣光, 李洪, 窦晓勇, 等. 我国芳纶1414产业现状及其发展方向[J]. 产业用纺织品, 2016, 34(7): 1-4. |
| BAI Rongguang, LI Hong, DOU Xiaoyong, et al. Current status and development direction of aramid 1414 industry in China[J]. Industrial Textiles, 2016, 34(7): 1-4. | |
| [47] | 程强. 高性能纤维产业现状与未来[N]. 中国石化报, 2024-12-11(5). |
| CEHNG Qiang. Current status and future of the high-performance fiber industry[N]. China Petroleum News, 2024-12-11(5). | |
| [48] |
NASSER J, STEINKE K, GROO L, et al. Improved interyarn friction, impact response, and stab resistance of surface fibrilized aramid fabric[J]. Advanced Materials Interfaces, 2019, 6(19): 1900881.
doi: 10.1002/admi.v6.19 |
| [49] |
JUNG J, SODANO H A. Aramid nanofiber reinforced rubber compounds for the application of tire tread with high abrasion resistance and fuel saving efficiency[J]. ACS Applied Polymer Materials, 2020, 2(11): 4874-4884.
doi: 10.1021/acsapm.0c00797 |
| [1] | SUN Yanyan, ZHANG Shitao, LIU Heng, LI Mingyuan, CAI Zhengguo, SUN Junfen, CHEN Long. Preparation of polypropylene/polybutylene terephthalate blend fibers and their rheological and thermal properties [J]. Journal of Textile Research, 2025, 46(10): 11-18. |
| [2] | GAO Wenyu, CHEN Cheng, XI Xiaowei, DENG Linhong, LIU Yang. Preparation and properties of collagen-based corneal repair materials reinforced with modified silk protein fibers [J]. Journal of Textile Research, 2025, 46(08): 1-9. |
| [3] | WANG Biao, LI Yuan, DONG Jie, ZHANG Qinghua. Influences of stress in thermal imidization on structure and properties of polyimide fibers [J]. Journal of Textile Research, 2025, 46(03): 1-8. |
| [4] | LI Huimin, LIU Shuqiang, DU Linlin, ZHANG Man, WU Gaihong. Parametric modeling of basalt/polyimide three-dimensional spacer woven fabric and numerical simulation of heat transfer in high temperature environment [J]. Journal of Textile Research, 2025, 46(01): 87-94. |
| [5] | MIAO Lulu, MENG Xiaoyi, DONG Zhengmei, PENG Qian, HE Linwei, ZOU Zhuanyong. Effect of heat treatment on mechanical property of core-spun yarn from low melting point polyester filament made by air-jet vortex spinning [J]. Journal of Textile Research, 2024, 45(11): 73-79. |
| [6] | LIU Sitong, JIN Dan, SUN Dongming, LI Yixuan, WANG Yanhui, WANG Jing, WANG Yuan. Research progress of nanofiber structure prepared by electrospinning [J]. Journal of Textile Research, 2024, 45(06): 201-209. |
| [7] | XIANG Yu, ZHOU Aihui, WANG Sixiang, JI Qiao, WEN Xinke, YUAN Jiugang. Analysis of disulfide bonds and conformational content of wool based on Raman spectroscopy [J]. Journal of Textile Research, 2024, 45(02): 45-51. |
| [8] | SHENG Xinyang, CHEN Xiaona, LU Yaya, LI Yanmei, SUN Guangwu. Quantitative relationship between fabric elasticity and shock absorption performance of sports bras [J]. Journal of Textile Research, 2024, 45(01): 161-167. |
| [9] | XIA Liangjun, CAO Genyang, LIU Xin, XU Weilin. Research progress in color construction of high-performance fibers and its products [J]. Journal of Textile Research, 2023, 44(06): 1-9. |
| [10] | CHEN Kang, CHEN Gaofeng, WANG Qun, WANG Gang, ZHANG Yumei, WANG Huaping. Influence of heat-treatment tension in post-processing on structural properties of high modulus low shrinkage industrial polyester fibers [J]. Journal of Textile Research, 2022, 43(10): 10-15. |
| [11] | HE Qi, LI Junling, JIN Gaoling, LIU Jin, KE Fuyou, CHEN Ye, WANG Huaping. Preparation and properties of tetrahydrofuran homopolyether-polybutyleneterephthalate/polyethylene terephthalate parallel composite fiber [J]. Journal of Textile Research, 2022, 43(09): 70-75. |
| [12] | XIAO Qi, WANG Rui, ZHANG Shujie, SUN Hongyu, WANG Jingru. Finite element simulation of pilling of polyester/cotton woven fabrics using ABAQUS [J]. Journal of Textile Research, 2022, 43(06): 70-78. |
| [13] | CHEN Xian, LI Mengmeng, ZHAO Xin, DONG Jie, TENG Cuiqing. Preparation and microstructure control of aerogel fibers based on aramid nanofibers [J]. Journal of Textile Research, 2021, 42(11): 17-23. |
| [14] | WANG Jianming, LI Yongfeng, HAO Xinmin, YAN Jinlong, QIAO Rongrong, WANG Meihui. Study on structure and moisture absorption and liberation properties of bio-based polyamide 56 and polyamide 66 [J]. Journal of Textile Research, 2021, 42(08): 1-7. |
| [15] | ZHENG Sensen, GUO Tao, DONG Jie, WANG Shihua, ZHANG Qinghua. Preparation, structure and properties of high-strength high-modulus polyimide fibers containing benzimidazole moiety [J]. Journal of Textile Research, 2021, 42(02): 7-11. |
|
||