Journal of Textile Research ›› 2020, Vol. 41 ›› Issue (01): 118-123.doi: 10.13475/j.fzxb.20190100606

• Apparel Engineering • Previous Articles     Next Articles

Influence of steam exposure condition on thermal protective performance of fabrics

QIU Hao1, SU Yun1,2, WANG Yunyi1,2,3()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    3. Shanghai International Institute of Design and Innovation, Tongji University, Shanghai 200080, China
  • Received:2019-01-07 Revised:2019-04-11 Online:2020-01-15 Published:2020-01-14
  • Contact: WANG Yunyi E-mail:wangyunyi@dhu.edu.cn

Abstract:

Aiming to evaluate the effects of steam pressure and distance between hot steam and human body on thermal and moisture transfer of fabrics, this study was carried out to characterize thermal protective performance of fabrics under different steam pressures and jet distances. The relationship between water storage, steam permeability and thermal protective performance under the steam heat exposure condition was analyzed, and the influence of steam pressure on water storage and steam permeability was explored. The research findings indicate that increasing steam pressure and reducing jet distance can both decrease the thermal insulation, and evidently reduce the thermal protective performance of fabrics under steam exposure environment. Air permeability of fabric has a significant negative correlation with second degree burn time. In addition, both water storage and steam permeability are positively correlated with steam pressure, also with fabric's moisture regain and air permeability. It is concluded that the decrease of water absorption and steam penetration determine thermal protective performance of fabrics.

Key words: fabric for thermal protective, thermal protective performance, steam pressure, jet distance, second degree burn time

CLC Number: 

  • TS941.73

Tab.1

Basic parameters of fabrics for testing"

织物编号 纤维成分 组织结构 面密度/
(g·m-2)
厚度/mm 透气性/
(mm·s-1)
标准
回潮率/%
饱和含
水量/g
F1 芳纶1414 斜纹 210 0.66 124.91 3.53 3.13
F2 芳纶1414 平纹 150 0.53 649.63 3.63 6.23
F3 50%芳纶1313,50%芳纶1414 斜纹 210 0.54 153.60 3.20 1.25
F4 50%芳纶1313,50%纤维素纤维 平纹 150 0.33 608.47 2.88 0.80
F5 93%芳砜纶,5%凯夫拉,2%碳纤维 斜纹 250 0.53 122.42 3.09 1.04
F6 93%芳砜纶,5%芳纶,2%碳纤维 斜纹 200 0.68 589.74 4.96 9.80
F7 98%芳砜纶,2%碳纤维 平纹 150 0.42 233.09 3.29 2.92

Fig.1

Thermocouple position of front and back of fabric"

Fig.2

Moisture storage in fabrics under different steam pressures"

Tab.2

Steam permeability under different pressures"

织物
编号
50 kPa 100 kPa 150 kPa
渗透
量/g
标准
渗透
量/g
标准
渗透
量/g
标准
F1 0.03 0.00 0.06 0.01 0.09 0.01
F2 0.06 0.00 0.19 0.00 0.45 0.02
F3 0.04 0.01 0.06 0.01 0.11 0.00
F4 0.11 0.01 0.33 0.03 0.76 0.04
F5 0.05 0.01 0.08 0.01 0.10 0.01
F6 0.05 0.01 0.14 0.01 0.33 0.01
F7 0.04 0.01 0.09 0.00 0.16 0.00

Fig.3

Front(a)and back(b)temperature of F1 during thermal exposure stage"

Tab.3

Temperature differences between front and back of fabric for upper and lower sensors"

织物
编号
上传感器 下传感器
温差/℃ 标准差 温差/℃ 标准差
F1 8.32 0.15 5.68 0.14
F2 6.64 0.68 4.35 0.10
F3 6.99 0.72 4.92 0.01
F4 5.63 0.14 4.58 0.49
F5 7.27 0.05 5.47 0.67
F6 6.30 0.50 4.43 0.18
F7 5.56 0.04 5.10 0.05

Fig.4

Second degree burn time under different steam pressures"

Fig.5

Second degree burn time under different jet distances"

[1] YU S, STRCKFADEN M, CROWN B, et al. Garment specifications and mock-ups for protection from steam and hot water[J]. Journal of Astm International, 2012(1544):290-307.
[2] SATI R, CROWN E M, ACKERMAN M, et al. Protection from steam at high pressures: development of a test device and protocol[J]. International Journal of Occupational Safety & Ergonomics Jose, 2008,14(1):29-41.
doi: 10.1080/10803548.2008.11076748 pmid: 18394324
[3] MANDAL S, SONG G, GHOLAMREZA F. A novel protocol to characterize the thermal protective performance of fabrics in hot-water exposure[J]. Journal of Industrial Textiles, 2015,46(1):279-291.
[4] WANG M, LI X, LI J, et al. A new approach to quantify the thermal shrinkage of fire protective clothing after flash fire exposure[J]. Textile Research Journal, 2016,86(6):580-592.
[5] CHAKRABORTY S. Thermal protective performance of clothing exposed to radiant heat[J]. Journal of the Textile Institute, 2015,106(12):1388-1393.
[6] ROSSI R, INDELICATO E, BOLLI W. Hot steam transfer through heat protective clothing layers[J]. International Journal of Occupational Safety & Ergonomics Jose, 2004,10(3):239-245.
pmid: 15377408
[7] DESRUELLE A V, SCHMID B. The steam laboratory of the institut de médecine navale du service de santé des armées: a set of tools in the service of the French navy[J]. European Journal of Applied Physiology, 2004,92(6):630-635.
pmid: 15205957
[8] SUMIT M, SONG G. Characterization of protective textile material for thermal hazard [C]//Proceedings of Fiber Society 2011 spring conference. Hong Kong:[s.n.], 2011: 23-25.
[9] SU Y, LI J. Analyzing steam transfer though various flame-retardant fabric assemblies in radiant heat exposure[J]. Journal of Industrial Textiles, 2016,47(5):853-869.
[10] SU Y, LI J, WANG Y. Effect of air gap thickness on thermal protection of firefighter's protective clothing against hot steam and thermal radiation[J]. Fibers & Polymers, 2017,18(3):582-589.
[11] SU Y, LI J. Development of a test device to characterize thermal protective performance of fabrics against hot steam and thermal radiation[J]. Measurement Science & Technology, 2016,27(12):1-9.
[12] ABBOTT N J, SCHULMAN S. Protection from fire: nonflammable fabrics and coatings[J]. Journal of Industrial Textiles, 1976,6(1):48-64.
[13] ORTEGA J, LEWIS J P, SANKEY O F. First principles simulations of fluid water: the radial distribution functions[J]. Journal of Chemical Physics, 1997,106(9):3696-3702.
[14] OLDERMAN G M. Liquid repellency and surgical fabric barrier properties[J]. Engineering in Medicine, 1984,13(1):35-43.
doi: 10.1243/emed_jour_1984_013_009_02 pmid: 6538521
[15] BARKAR R L, GUERTH-SCHACHER C, GRIMES R V, et al. Effects of moisture on the thermal protective performance of firefighter protective clothing in low-level radiant heat exposures[J]. Textile Research Journal, 2006,76(1):27-31.
[16] SUN G, YOO H S, ZHANG X S, et al. Radiant protective and transport properties of fabrics used by wildland firefighters[J]. Textile Research Journal, 2000,70(7):567-573.
[17] HE J, LI J. Analyzing the transmitted and stored energy through multilayer protective fabric systems with various heat exposure time[J]. Textile Research Journal, 2016,86(3):235-244.
[1] WANG Qi, TIAN Miao, SU Yun, LI Jun, YU Mengfan, XU Xiao. Effect of open/closed air layer on thermal protective performance of flame-resistant fabrics [J]. Journal of Textile Research, 2020, 41(12): 54-58.
[2] MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(11): 116-121.
[3] ZHAI Li'na, LI Jun, YANG Yunchu. Development and current state of thermal sensors used for testing thermal protective clothing [J]. Journal of Textile Research, 2020, 41(10): 188-196.
[4] HE Jiazhen, XUE Xiaoyu, WANG Min, LI Jun. Predicting thermal protective performance of clothing based on maximum attenuation factor model [J]. Journal of Textile Research, 2020, 41(06): 112-117.
[5] GAO Shan, LU Yehu, ZHANG Desuo, WU Lei, WANG Laili. Thermal protective performance of composite flame retardant fabrics treated by graphene aerogel [J]. Journal of Textile Research, 2020, 41(04): 117-122.
[6] HU Beibei, DU Feifei, LI Xiaohui. Hole structure optimization and evaluation of thermal barrier for firefighter protective clothing [J]. Journal of Textile Research, 2019, 40(11): 140-144.
[7] SU Yun, YANG Jie, LI Rui, SONG Guowen, LI Jun, ZHANG Xianghui. Predictions of physiological reaction and skin burn of firefighter exposing to thermal radiation [J]. Journal of Textile Research, 2019, 40(02): 147-152.
[8] . Prediction of skin injury degree based on modified model of heat transfer in three-layered thermal protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(01): 111-118.
[9] . Research progress on air gap entrapped in firefighters' protective clothing and its measurement methods [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(06): 151-156.
[10] . Influence of waterproof permeable layer on thermal and moisture protective performance of firefighter protective clothing in fire disaster [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(02): 152-158.
[11] . Effects of light and moisture on performance of fabrics for firefighter protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(09): 82-88.
[12] . Evaluation of thermal protective performance of fabric for firefighter protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(08): 110-115.
[13] . Devilopment and current status on performance test and evaluation of thermal protective clothing [J]. JOURNAL OF TEXTILE RESEARCH, 2015, 36(07): 162-168.
[14] . Application and feasibility analysis of phase change materials for fire-fighter suit [J]. JOURNAL OF TEXTILE RESEARCH, 2014, 35(8): 124-0.
[15] ZHU Fanglong;WANG Xiujuan;ZHANG Qizhe;ZHANG Weiyuan. Numerical model of heat transfer in protective clothing for emergency rescue in fire fighting [J]. JOURNAL OF TEXTILE RESEARCH, 2009, 30(04): 106-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!