Journal of Textile Research ›› 2021, Vol. 42 ›› Issue (04): 114-120.doi: 10.13475/j.fzxb.20200703707

• Dyeing and Finishing & Chemicals • Previous Articles     Next Articles

Determination of luteolin content in carex meyeriana extract and its antibacterial properties

WANG Chunhong1,2(), YANG Lu1, HU Min1, WANG Xiaoyun1, WANG Lijian1   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China
  • Received:2020-07-15 Revised:2020-12-31 Online:2021-04-15 Published:2021-04-20

Abstract:

In order to develop the application of carex meyeriana, and explore its antibacterial performance, the carex meyeriana extract was extracted by alcohol water mixture, and the basic performance of the extract with different alcohol water ratios were tested. The content of luteolin, an antibacterial substance, was tested by ultraviolet (UV) spectrophotometer and high performance liquid chromatography (HPLC) method, and the results of the two tests are compared. Its antibacterial rate was tested by in vitro antibacterial method. The results show that with the increase of the proportion of water in the extraction solvent, the conductivity of the extraction solution gradually increases and the pH value gradually decreases exhibiting acidity. The change trends of luteolin content detected by using UV spectrophotometer and HPLC method are the same. The content of luteolin decreases with the increase of the proportion of water in the extraction solvent, and the antibacterial rates of Escherichia coli and Staphylococcus aureus in the four samples with different alcohol water ratios were all higher than 70%, which indicates that the extract has good antibacterial properties.

Key words: carex meyeriana extract, ultraviolet spectrophotometry method, high performance liquid chromatography method, luteolin, in vitro antibacterial activity, antibacterial property

CLC Number: 

  • TS101.4

Tab.1

Medium configuration method"

培养基名称 牛肉膏
质量/g
蛋白胨
质量/g
溶剂
名称 体积/mL
A 0.6 1.0 提取液a 200
B 0.6 1.0 提取液b 200
C 0.6 1.0 提取液c 200
D 0.6 1.0 提取液d 200
E 0.9 1.5 蒸馏水 300

Tab.2

Test results of pH value and conductivity of different extracts"

提取液编号 pH值 电导率/(μS·cm-1)
a 6.39 192
b 6.26 322
c 5.94 471
d 5.69 546

Fig.1

Apparent color picture of extract. (a) Extract a; (b) Extract b; (c) Extract c; (d) Extract d"

Fig.2

Curve of UV spectrometric test for luteolin standard solvent"

Tab.3

Concentration of luteolin in different solvent extracts tested by UV spectrophotometer method"

提取液编号 吸光度 木犀草素质量浓度/(μg·mL-1)
a 1.375 29.22
b 0.123 1.36
c 0.121 1.31
d 0.110 1.07

Fig.3

HPLC chart for luteolin standard solvent"

Fig.4

Standard curve of HPLC for luteolin standard solvent"

Fig.5

HPLC chart of different extracts. (a) Extract a; (b) Extract b; (c) Extract c; (d) Extract d"

Tab.4

Content of luteolin in different extracts tested by HPLC"

提取液编号 峰面积/au·min 木犀草素的质量浓度/(μg·mL-1)
a 3 803 864 37.97
b 182 512 1.48
c 172 481 1.38
d 145 449 1.11

Fig.6

Antibacterial effect on Escherichia coli of carex meyeriana prepared by different ratios of alcohol to water. (a)Experimental group A; (b)Experimental group B; (c)Experimental group C; (d)Experimental group D; (e)Controlled group E"

Tab.5

Antibacterial rate of carex meyeriana extract to Escherichia coli"

平板序号 细菌计数平均值/(109 CFU·mL-1) 抑菌率/%
实验组A 4.24 90.6
实验组B 8.73 80.5
实验组C 9.40 79.2
实验组D 11.10 75.5
对照组E 45.30

Fig.7

Antibacterial effect on Staphylococcus aureus of carex meyeriana prepared by different ratios of alcohol to water. (a)Experimental group A; (b)Experimental group B; (c)Experimental group C; (d)Experimental group D; (e)Controlled group E"

Tab.6

Antibacterial rate of carex meyeriana extract to Staphylococcu saureus"

平板序号 细菌计数平均值/(109 CFU·mL-1) 抑菌率/%
实验组A 8.93 88.6
实验组B 14.70 81.2
实验组C 19.60 75.0
实验组D 19.90 74.6
对照组E 78.30
[1] 周淑荣, 董昕瑜, 包秀芳, 等. 中国东北地区乌拉草资源及开发利用[J]. 特种经济动植物, 2013,16(6):37-40.
ZHOU Shurong, DONG Xinyu, BAO Xiufang, et al. There sources and exploitation of rabdosia uralensis in northeast China[J]. Special Economic Animals and Plants, 2013,16(6):37-40.
[2] 胡敏, 王春红, 荆妙蕾, 等. 乌拉草纤维的研究进展[J]. 棉纺织技术, 2020,48(3):80-84.
HU Min, WANG Chunhong, JING Miaolei, et al. Research progress of carex meyeriana kunth fiber[J]. Cotton Textile Technology, 2020,48(3):80-84.
[3] WANG H, NIE L, XU Y, et al. Traffic-emitted metal status and uptake by carex meyeriana kunth and thelypteris palustris var pubescens fernald growing in roadside turfy swamp in the Changbai mountain area, China[J]. Environmental Science and Pollution Research, 2018,25(19):18498-18509.
pmid: 29696547
[4] 董立琴, 骆倩, 蒋洁, 等. 几种新型天然纤维素纤维研究进展[J]. 纺织科技进展, 2017,39(2):6-11.
DONG Liqin, LUO Qian, JIANG Jie, et al. Research progress of several new natural cellulose fibers[J]. Progress in Textile Science & Technology, 2017,39(2):6-11.
[5] 王利军, 王春红, 龙碧璇, 等. 乌拉草/棉/维纶复合纱线的开发与性能[J]. 纺织学报, 2017,38(12):49-53.
WANG Lijun, WANG Chunhong, LONG Bixuan, et al. Development and performance of carex meyeriana/cotton/vinylon composite yarn[J]. Journal of Textile Research, 2017,38(12):49-53.
[6] 王利军, 王春红, 王妮, 等. 乌拉草纤维的提取及其结构和性能研究[J]. 上海纺织科技, 2017,45(10):22-25,64.
WANG Lijun, WANG Chunhong, WANG Ni, et al. Extraction of meyer sedge fiber and its structure and properties[J]. Shanghai Textile Science & Technology, 2017,45(10):22-25,64.
[7] YANG X, LIU H, HAN F Y, et al. Fabrication of cellulose nanocrystal from carex meyeriana kunth and its application in the adsorption of methylene blue[J]. Carbohydrate Polymers, 2017,175(1):464-472.
doi: 10.1016/j.carbpol.2017.08.007
[8] 董伟楠. 多级孔结构碳材料在超级电容器中的电化学性能研究[D]. 锦州:渤海大学, 2020: 19-32.
DONG Weinan. Research of the electrochemical performance of hierarchical porous carbon materials in supercapacitors[J]. Jinzhou:Bohai University, 2020: 19-32.
[9] 余克娇. 乌拉草化学成分和药理作用的初步研究[D]. 沈阳:沈阳药科大学, 2005: 10-14.
YU Kejiao. Preliminary inquiry of the chemical constituents and pharmacological effects in the curaua[D]. Shenyang:Shenyang Pharmaceutical University, 2005: 10-14.
[10] 蔡蕙荞, 杨子珍, 解玉, 等. 黄酮类化合物木犀草素对哮喘影响的研究近况[J]. 世界最新医学信息文摘, 2019,19(50):89-90.
CAI Huiqiao, YANG Zizhen, XIE Yu, et al. Recent research on the effect of luteolin on asthma[J]. World Latest Medicine Information, 2019,19(50):89-90.
[11] 王伟, 何平, 江小明. 木犀草素及其黄酮苷的抗炎、抗氧化作用[J]. 食品科学, 2020,41(17):208-215.
WANG Wei, HE Ping, JIANG Xiaoming. Anti-inflammatory and antioxidant effects of luteolin and its flavone glycosides[J]. Food Science, 2020,41(17):208-215.
[12] 于倩, 巫冠中. 木犀草素抗炎机制的研究进展[J]. 药学研究, 2019,38(2):108-111.
YU Qian, WU Guanzhong. Research progress of anti-inflammatory properties of luteolin[J]. Journal of Pharmaceutical Research, 2019,38(2):108-111.
[13] 夏云岭, 张振凌, 张洪坤, 等. HPLC法同时测定半枝莲饮片中4种黄酮类成分的含量及主成分分析[J]. 中国药房, 2019,30(20):2839-2844.
XIA Yunling, ZHANG Zhenling, ZHANG Hongkun, et al. Content determination and principle components analysis of 4 kinds of flavones in scutellaria barbata decoction pieces by HPLC[J]. China Pharmacy, 2019,30(20):2839-2844.
[14] 马梦雪, 吴士筠, 李刚, 等. HPLC法同时测定不同品种红花中4种黄酮类[J]. 中成药, 2019,41(11):2694-2700.
MA Mengxue, WU Shiyun, LI Gang, et al. Simultaneous determination of four flavonoids in carthamus tinotorius of different varieties by HPLC[J]. Chinese Traditional Patent Medicine, 2019,41(11):2694-2700.
[15] 林卓慧. 木犀草素抗菌活性研究[J]. 检验医学与临床, 2009,6(12):1022.
LIN Zhuohui. Study on the antibacterial activity of luteolin[J]. Laboratory Medicine and Clinic, 2009,6(12):1022.
[16] 王春红, 白肃跃, 马海军, 等. 乌拉草纤维的超声波辅助碱氧一浴法提取工艺优化[J]. 农业工程学报, 2013,29(9):267-274.
WANG Chunhong, BAI Suyue, MA Haijun, et al. Optimization on ultrasound-alkali-H2O2 one-bath extraction process of curaua fiber[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(9):267-274.
[17] 陈莉, 李潇. 姜黄染色织物的pH值敏感变色性能[J]. 纺织学报, 2017,38(4):80-84.
CHEN Li, LI Xiao. Discoloration property for pH-sensitivity of fabric dyed by turmeric[J]. Journal of Textile Research, 2017,38(4):80-84.
[1] LI Junyu, JIANG Peiqing, ZHANG Wenqi, LI Wenbin. Effect of atomic layer deposition technology on functionalization of cellulose membrane [J]. Journal of Textile Research, 2020, 41(12): 26-30.
[2] MA Yue, GUO Jing, YIN Juhui, ZHAO Miao, GONG Yumei. Preparation and characterization of cellulose/dialdehyde cellulose/Antarctic krill protein antibacterial fibers [J]. Journal of Textile Research, 2020, 41(11): 34-40.
[3] JIANG Xingmao, LIU Qi, GUO Lin. Structure and antibacterial properties of silica coated silver-copper nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 102-108.
[4] ZHANG Yanyan, ZHAN Luyao, WANG Pei, GENG Junzhao, FU Feiya, LIU Xiangdong. Research progress in preparation of durable antibacterial cotton fabrics with inorganic nanoparticles [J]. Journal of Textile Research, 2020, 41(11): 174-180.
[5] JIA Lin, WANG Xixian, TAO Wenjuan, ZHANG Haixia, QIN Xiaohong. Preparation and antibacterial property of polyacrylonitrile antibacterial composite nanofiber membranes [J]. Journal of Textile Research, 2020, 41(06): 14-20.
[6] WANG Tingting, LIU Liang, CAO Xiuming, WANG Qingqing. Preparation and photodynamic antimicrobial properties of hypocrellinpoly(methyl methacrylate-co-methacrylic acid) nanofibers [J]. Journal of Textile Research, 2020, 41(05): 1-7.
[7] WANG Xiaofei, WAN Ailan. Preparation of polypyrrole/silver conductive polyester fabric by ultraviolet exposure [J]. Journal of Textile Research, 2020, 41(04): 112-116.
[8] ZHAO Bing, HUANG Xiaocui, QI Ning, ZHONG Zhou, CHE Mingguo, GE Liangliang. Research progress of antibacterial cotton fabric treated with silver nanoparticles based on covalent bond [J]. Journal of Textile Research, 2020, 41(03): 188-196.
[9] WU Qianqian, LI Ke, YANG Lishuang, FU Yijun, ZHANG Yu, ZHANG Haifeng. Preparation and properties of drug-loaded polyvinylidene fluoride wound dressings [J]. Journal of Textile Research, 2020, 41(01): 26-31.
[10] ZHANG Zhibin, LI Gang, MAO Senxian, LI Xunxun, CHEN Yushuang, MAO Qingshan, LI Yi, PAN Zhijuan, WANG Xiaoqin. Preparation and antibacterial activity of silk fibroin/chitosan microspheres [J]. Journal of Textile Research, 2019, 40(10): 7-12.
[11] WANG Wencong, FAN Jingjing, DING Chao, WANG Hongbo. Preparation and properties of multifunctional composite conductive wool fabric [J]. Journal of Textile Research, 2019, 40(08): 117-123.
[12] WU Jiao, YU Husheng, WAN Xingyun, TIAN Ping, LI Huimin, HOU Xiaoxin. Preparation and properties of anti-bacterial, anti-mite and anti-mildew functional modified viscose fibers [J]. Journal of Textile Research, 2019, 40(07): 19-23.
[13] SUN Hui, ZHANG Hengyuan, XIAN Yulong, ZHOU Chuankai, YU Bin. Preparation and antibacterial properties of TiO2-Ag/poly(lactic acid) nano-composite fibers [J]. Journal of Textile Research, 2019, 40(04): 1-6.
[14] . Preparation and antibacterial properties of electrospun core shell nanoscale packaging films [J]. Journal of Textile Research, 2018, 39(12): 13-17.
[15] . Chitosan based nanofiber drug loaded system and its sustained release behavior [J]. Journal of Textile Research, 2018, 39(12): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!