Journal of Textile Research ›› 2022, Vol. 43 ›› Issue (06): 57-62.doi: 10.13475/j.fzxb.20210402006

• Textile Engineering • Previous Articles     Next Articles

Influence of cotton/polyester sheath-core structure roving parameters on structure and performance of spun yarn

GUO Mingrui(), GU Yinhua, GAO Weidong   

  1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2021-04-05 Revised:2022-03-18 Online:2022-06-15 Published:2022-07-15

Abstract:

In order to investigate the influence of roving parameters on the appearance and properties of cotton/polyester sheath-core staple yarns by the two-step spinning process, the effects of factors such as spinning settings, roving linear density, roving twist and core/sheath fiber ratio on the exposure of core fiber and yarn properties were studied. With the help of image processing technology, the core fiber exposure ratio was quantitatively measured. The results show that as the width of fiber bundle output from roving frame increases from 10.2 mm to 16.3 mm, the eccentricity of core fiber bundle in roving decreases from 26.5% to 19.2%, and the exposure ratio of core fiber in yarn decreases by 11.3% (29.2 tex) and 12.3% (19.4 tex). When the roving count increases or the twist coefficient decreases, the core fiber exposure proportion decreases. When the proportion of polyester core fiber increased from 15% to 25%, the exposure proportion of core fiber increased by 35.6% (29.2 tex) and 30.5% (19.4 tex).

Key words: sheath-core staple yarn, core fiber ratio, core fiber exposure proportion, roving, spun yarn

CLC Number: 

  • TS104.1

Tab.1

Cotton fiber quality index"

马克隆值 上半部平均长度/mm 长度整齐度/% 短绒率/%
3.94 29.32 83.5 12.81

Tab.2

Experimental scheme I"

2种细纱样品编号 粗纱样
品编号
涤纶含
量/%
前集
束器
29.2 tex 19.4 tex
C1 15.0
A1 B1 C2 20.0
C3 25.0
C4 15.0
A2 B2 C5 20.0
C6 25.0

Fig.1

Roving process. (a) With front buncher; (b) Without front buncher"

Tab.3

Experimental scheme II"

2种细纱样品编号 粗纱捻
系数
皮芯粗纱定量/
(g·(10 m)-1)
29.2 tex 19.4 tex
A3 B3 90
A4 B4 100 4
A5 B5 110
A6 B6 90
A7 B7 100 5
A8 B8 110
A9 B9 90
A10 B10 100 6
A11 B11 110

Tab.4

Experimental scheme III"

2种细纱样品编号 涤纶含
量/%
粗纱定量/
(g·(10 m)-1)
粗纱
捻系数
29.2 tex 19.4 tex
A12 B12 15
A13 B13 20 6 90
A14 B14 25

Fig.2

Original picture of cotton/polyester sheath-core spun yarn"

Fig.3

Binarization diagram of cotton/polyester sheath-core spun yarn"

Fig.4

Cross section of sheath-core roving"

Tab.5

Degree of eccentricity of core fiber bundle of sheath-core roving %"

粗纱样品编号 C1 C2 C3 C4 C5 C6
芯纤维偏心度γ 30.3 32.3 40.7 19.2 24.1 26.5

Tab.6

Influence of width of roving twisting zone on core fiber exposure ratio"

细纱线密
度/tex
不同前钳口须条宽度下芯纤维外露比例/%
10.2 mm(有前集束器) 16.3 mm(无前集束器)
29.2 4.50 3.99
19.4 5.19 4.55

Tab.7

Influence of linear density and twist of roving on core fiber exposure ratio"

细纱线
密度/tex
粗纱定量/
(g·(10 m)-1)
不同粗纱捻系数下芯纤维外露比例/%
90 100 110
29.2 4.0 4.20 4.30 4.41
5.0 3.91 3.99 4.01
6.0 3.43 3.67 3.74
19.4 4.0 4.76 4.99 5.17
5.0 4.36 4.55 4.77
6.0 3.89 4.48 4.54

Tab.8

Result of two-way ANOVA of core fiber exposure ratio of 29.2 tex yarn by roving count and twist"

差异源 偏差平方和 自由度 均方 F P
0.714 4 2 0.357 2 103.706 5 0.000 4
0.066 8 2 0.033 4 9.690 3 0.029 3
误差 0.013 8 4 0.003 4
总计 0.794 9 8

Tab.9

Influence of core fibre proportion of roving and yarn count on core fiber exposure ratio"

细纱线密
度/tex
不同芯纤维含量下芯纤维外露比例
15% 20% 25%
29.2 3.09 3.43 4.19
19.4 3.51 3.89 4.58

Tab.10

Result of two-way ANOVA of core fibre exposure ratio by yarn count and core fibre ratio"

差异源 偏差平方和 自由度 均方 F P
0.268 8 1 0.268 8 435.918 9 0.002 3
1.221 6 2 0.610 8 990.513 5 0.001 0
误差 0.001 2 2 0.000 6
总计 1.491 7 5

Tab.11

Influence of roving twisting zone width on yarn quality"

细纱样
品编号
条干
CVm/%
断裂强
力/cN
断裂伸
长率/%
毛羽/(根·(100 m)-1)
≤2 mm ≥3 mm
A1 14.83 350.24 5.37 675.2 23.1
A2 15.22 345.67 5.43 936.2 34.8

Tab.12

Influence of linear density and twist of roving on yarn quality"

细纱样
品编号
条干CVm
值/%
断裂强
力/cN
断裂伸
长率/%
毛羽/(根·(100 m)-1)
≤2 mm ≥3 mm
A3 14.73 360.21 5.15 875.2 32.8
A4 15.42 345.67 5.43 809.4 34.8
A5 13.89 352.68 5.49 770.6 28.8
A5 15.69 353.47 5.74 1 003.8 32.0
A7 15.38 356.29 5.48 936.2 34.8
A8 14.71 348.35 5.71 946.6 36.2
A9 16.03 342.04 5.32 1 231.4 54.2
A10 15.42 358.07 5.17 1 155.8 49.6
A11 14.84 355.80 5.35 1 120.6 44.6

Tab.13

Influence of core fiber proportion of roving on yarn quality"

细纱样
品编号
条干
CVm/%
断裂强
力/cN
断裂伸
长率/%
毛羽/(根·(100 m)-1)
≤2 mm ≥3 mm
A12 14.83 350.42 5.27 1 423.6 64.3
A13 15.03 342.04 5.32 1 231.4 54.2
A14 15.48 341.58 5.21 973.2 49.5

Fig.5

Image of weft knitted fabric with sheath-core spun yarn"

[1] 张一鸣, 陈常青, 熊立辉. 涤/粘包芯纱的开发和纺制[J]. 纺织学报, 1996, 17(2): 97-98, 96.
ZHANG Yiming, CHEN Changqing, XIONG Lihui. A study on spinning polyester-in rayon core-spun yarn[J]. Journal of Textile Research, 1996, 17(2): 97-98, 96.
[2] 魏艳红, 刘新金, 谢春萍, 等. 聚酯长丝/棉复合纱斜纹织物的保形性及服用性能[J]. 纺织学报, 2019, 40(12): 39-44.
WEI Yanhong, LIU Xinjin, XIE Chunping, et al. Shape retention and wearing properties of polyester filament/cotton composite yarn twill fabrics[J]. Journal of Textile Research, 2019, 40(12): 39-44.
[3] 闫海江. 两种包芯纱的工艺优选及质量对比[J]. 棉纺织技术, 2015, 43(1): 37-40.
YAN Haijiang. Process optimization and quality comparison of two kinds of core-spun yarn[J]. Cotton Textile Technology, 2015, 43(1): 37-40.
[4] MORTON W E. The arrangement of fibers in singles yams[J]. Textile Research Journal, 1956, 26(5):325-331.
doi: 10.1177/004051755602600501
[5] HEARLE J W S, BOSE O N. Migration of fibers in yams: Part II: a geometrical explanation of migra-tion[J]. Textile Research Journal, 1965, 35(8):693-699.
doi: 10.1177/004051756503500802
[6] SAWHNEY A P S, ROBERT K Q, RUPPENICKER G F, et al. Improved method of producing cotton-covered polyester staple-core yam on a ring spinning frame[J]. Textile Research Journal, 1992, 62(1): 21-25.
doi: 10.1177/004051759206200104
[7] 郭梅, 朱清云. 棉/涤短纤包芯纱的生产实践[J]. 棉纺织技术, 2005, 33(3): 43-45.
GUO Mei, ZHU Qingyun. Production practice of cotton polyester short fiber core spun yarn[J]. Cotton Textile Technology, 2005, 33(3): 43-45.
[8] 张红梅. 粗纱包芯纱棉/涤针织纱的研究与开发[J]. 针织工业, 2017(8): 24-26.
ZHANG Hongmei. Study and development of cotton polyester roving core spun yarn[J]. Knitting Industries, 2017(8): 24-26.
[9] 胡元元, 吕治家. 新型中空棉纱开发思路及其产品性能研究[J]. 棉纺织技术, 2020, 48(7): 47-51.
HU Yuanyuan, LÜ Zhijia. New hollow cotton yarn development idea and product property research[J]. Cotton Textile Technology, 2020, 48(7): 47-51.
[10] 顾银华, 郭明瑞, 高卫东. 基于粗纱工序的短纤皮芯结构纱影响因素研究[J]. 棉纺织技术, 2020, 48(11): 14-18.
GU Yinhua, GUO Mingrui, GAO Weidong. Study on the influence factor of staple fiber sheath-core structure yarn based on roving process[J]. Cotton Textile Technology, 2020, 48(11): 14-18.
[11] 张玉, 谢春萍, 陆如. 全聚纺涤棉混纺纱内纤维的径向分布[J]. 纺织学报, 2014, 35(12): 52-56.
ZHANG Yu, XIE Chunping, LU Ru. Analyses on fiber radial distributions of polyester/cotton blended yarn in complete condensing spinning[J]. Journal of Textile Research, 2014, 35(12): 52-56.
[12] 马楠, 田金家, 丁曰东, 等. 涤棉混纺纱定量化学分析方法的改进[J]. 棉纺织技术, 2013, 41(8): 28-30.
MA Nan, TIAN Jinjia, DING Yuedong, et al. Quantitative chemical analysis modification of polyester cotton blended yarn[J]. Cotton Textile Technology, 2013, 41(8): 28-30.
[13] 聂毓洪. 提高混纺纱强力的合理混纺比[J]. 纺织学报, 1996, 17(4): 253-254.
NIE Yuhong. Reasonable blending ratio to improve the strength of blended yarn[J]. Journal of Textile Research, 1996, 17(4): 253-254.
[1] JIANG Gaoming, CHENG Bilian, WAN Ailan, LI Bingxian. Research progress in key technologies of spun yarn warp knitting production [J]. Journal of Textile Research, 2022, 43(05): 7-11.
[2] WU Jiaqing, WANG Ying, HAO Xinmin, GONG Yumei, GUO Yafei. Effect of filament feeding positions on structure and properties of siro-spinning core-spun yarns [J]. Journal of Textile Research, 2021, 42(08): 64-70.
[3] YUAN Li, XIONG Ying, GU Qian, WANG Danshu, HUO Da, LIU Junping. Characteristics and factorial study of color transfer between dyed fiber and colored spun yarns [J]. Journal of Textile Research, 2021, 42(05): 122-129.
[4] CHEN Meiyu, LIU Yulin, HU Geming, SUN Runjun. Effect of wrapping and twisting on mechanical properties of air-jet vortex spun yarns [J]. Journal of Textile Research, 2021, 42(01): 59-66.
[5] WU Yilun, LI Zhongjian, PAN Ruru, GAO Weidong, ZHANG Ning. Weft knitted fabric appearance simulation using colored spun yarn image [J]. Journal of Textile Research, 2019, 40(06): 111-116.
[6] GUO Mingrui, LI Peiying, SUN Fengxin, GAO Weidong. Spinning mechanism of two-color transformation segment color yarns and influencing factors on length and breaking tenacity of blend fragment [J]. Journal of Textile Research, 2019, 40(05): 30-35.
[7] HE Jian, PEI Zeguang, ZHOU Jian, XIONG Xiangzhang, LÜ Haichen. Online monitoring of formation process of vortex core-spun yarn containing metal wire [J]. Journal of Textile Research, 2019, 40(05): 136-143.
[8] YUAN Li, WANG Danshu, GU Qian, TU Shaojie, XIONG Ying, YUAN Haoran, LIU Junping, YAN Yuchen. Coloration rules between colored spun yarns and its fabrics based on spectral pan-similarity measure [J]. Journal of Textile Research, 2019, 40(02): 30-37.
[9] . Research progress of computer color matching for colored spun yarn [J]. Journal of Textile Research, 2018, 39(11): 176-184.
[10] . Preparation of elastic radiation resistant textile based on double filament core-spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(06): 52-57.
[11] . Fabrication, structure and properties of vortex core-spun yarn containing a metal wire [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(05): 25-31.
[12] . Break yarn monitoring and data display for ring spinning frame based on database [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(04): 123-129.
[13] . Parameter optimizing of Stearns-Noechel model in color matching of cotton colored spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(03): 31-37.
[14] . Global and local diversity features-fused colorimetry index testing and evaluation of colored spun yarns [J]. JOURNAL OF TEXTILE RESEARCH, 2018, 39(02): 157-164.
[15] . Mechanism and characteristics of digital rotor spun yarn [J]. JOURNAL OF TEXTILE RESEARCH, 2017, 38(11): 32-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!