纺织学报 ›› 2019, Vol. 40 ›› Issue (10): 26-32.doi: 10.13475/j.fzxb.20180903507

• 纤维材料 • 上一篇    下一篇

内涂覆锰氧化物聚(甲基)丙烯酸酯中空纤维制备及其对亚甲基蓝的脱色性能

郭东艳1,2, 徐乃库1,2(), 肖长发1,2   

  1. 1.天津工业大学 材料科学与工程学院, 天津 300387
    2.天津工业大学 分离膜与膜过程国家重点实验室, 天津 300387
  • 收稿日期:2018-09-13 修回日期:2018-12-26 出版日期:2019-10-15 发布日期:2019-10-23
  • 通讯作者: 徐乃库
  • 作者简介:郭东艳(1991—),女,硕士生。主要研究方向为有机高分子纤维材料。
  • 基金资助:
    国家自然科学基金项目(51103099);天津市应用基础及前沿技术研究计划项目(12JCQNJC01600);教育部高等学校博士学科点专项科研基金项目(20111201120002);中国博士后基金项目(2014M550143);中国博士后基金项目(2015T80221)

Preparation of poly(meth)acrylate hollow fiber with internal coating of manganese oxide and its capability to decolorize dyes of methylene blue

GUO Dongyan1,2, XU Naiku1,2(), XIAO Changfa1,2   

  1. 1. School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
    2. State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
  • Received:2018-09-13 Revised:2018-12-26 Online:2019-10-15 Published:2019-10-23
  • Contact: XU Naiku

摘要:

为提升聚(甲基)丙烯酸酯中空纤维对流经其内部亚甲基蓝(MB)水体的脱色效果,采用溶液聚合法合成甲基丙烯酸丁酯-甲基丙烯酸羟乙酯共聚物和丙烯酸丁酯-甲基丙烯酸羟乙酯共聚物,采用湿法纺丝纺制中空纤维,并采用内涂覆工艺将原位生成的锰氧化物通过络合作用固定于中空纤维内部。利用场发射扫描电子显微镜、X射线电子能谱仪分析功能化处理前后中空纤维形貌和表面元素变化,确定锰氧化物组成,并借助总有机碳分析仪、电感耦合等离子体发射光谱仪对MB脱色过程进行研究。结果表明,涂覆锰氧化物后,其强氧化作用使流经中空纤维内部MB溶液的脱色率由最初的10%提高至78.7%,且多次使用后对MB的脱色率仍远高于10%。

关键词: 废水脱色, 中空纤维, 内涂覆工艺, 锰氧化物, 亚甲基蓝

Abstract:

In order to enhance the decolorization efficiency of methylene blue (MB) when it flows in the poly(meth)acrylate hollow fiber, the blend solution of poly (butyl methacrylate-co-hydroxyethyl methacrylate) and poly (butyl acrylate-co-hydroxyethyl methacrylate) synthesized via solution polymerization was used as spinning dope to prepare the above hollow fiber through wet spinning. The process of internal coating was then designed to immobilize in-situ generated manganese oxide onto the inside of hollow fiber through complexation. Meanwhile, the changes of morphology and surface element of hollow fibers before and after functionalization were analyzed by using field emission scanning electron microscopy and X-ray electron spectroscopy, and the composition of manganese oxide was then determined. Additionally, total organic carbon analyzer and inductively coupled plasma atomic emission spectrometer were used to investigate the decolorization of MB. The results show that as far as the hollow fiber prepared after coating is considered, when the aqueous solution of MB flowed into its inside decolorization efficiency is increased from original 10% to 78.7%, and the decolorization efficiency is much higher than 10% even though the manganese oxide-coated hollow fiber is used for several times. It is clear that the strong oxidation of manganese oxide is responsible for the improvement of decolorization efficiency.

Key words: decolorization of waste water, hollow fiber, internal coating, manganese oxide, methylene blue

中图分类号: 

  • TQ342.8

表1

硫酸水解时间对亚甲基蓝脱色率的影响"

样品 1 h 2 h 3 h
HF1 73.3 66.6 60.4
HF2 78.6 69.7 63.9
HF3 76.3 67.7 62.1

表2

高锰酸钾氧化时间对亚甲基蓝脱色率的影响"

样品 0.5 h 1 h 2 h
HF1 70.6 73.3 76.2
HF2 67.7 78.6 79.8
HF3 61.9 70.6 75.1

图1

HF2和HF2-b的FESEM照片"

图2

HF2和HF2-b 的XPS全谱图"

图3

HF2-b 的Mn2p3/2 电子局部XPS谱图"

图4

重复使用HF2-b 过程中亚甲基蓝脱色率"

表3

脱色前后亚甲基蓝溶液中总有机碳以及锰离子的质量浓度"

样品编号 总有机碳质量浓度 锰离子质量浓度
L1 2.24 0.40
L2 2.41 0.98
L3 2.92 1.02
L4 2.98 1.52
L5 4.05 1.84
20 mg/L MB 8.62

图5

Mn2p3/2电子局部XPS谱图"

表4

锰氧化物中Mn(Ⅱ)、Mn(Ⅲ)和Mn(Ⅳ)的相对含量"

样品 Mn(Ⅱ) Mn(Ⅲ) Mn(Ⅳ)
HF2-b 3.9 42.5 53.6
HF2-b-1 11.7 46.4 41.9
HF2-b-2 21.2 42.7 36.1
HF2-b-3 27.7 39.9 32.4
HF2-b-4 39.4 31.5 29.1
HF2-b-5 40.5 33.8 25.7
[1] MA X J, ZHOU M H. A comparative study of azo dye decolorization by electro-Fenton in two common electrolytes[J]. Journal of Chemical Technology & Biotechnology, 2010,84(10):1544-1549.
[2] GALAI S, KORRI Y H, MARZOUKI M N. Characterization of yellow bacterial laccase SmLac/role of redox mediators in azo dye decolorization[J]. Journal of Chemical Technology & Biotechnology, 2015,89(11):1741-1750.
[3] VANITHA K, JIBRAIL K, YON L S. Efficiency of various recent wastewater dye removal methods: a review[J]. Journal of Environmental Chemical Engineering, 2018,6(4):4676-4697.
doi: 10.1016/j.jece.2018.06.060
[4] ROCHER V, BEE A, SIAUGUE J M. Dye removal from aqueous solution by magnetic alginate beads crosslinked with epichlorohydrin[J]. Journal of Hazardous Materials, 2010,178(1):434-439.
[5] XIE Y B, LI X Z. Interactive oxidation of photoelectrocatalysis and electro-fenton for azo dye degradation using TiO2-Ti mesh and reticulated vitreous carbon electrodes[J]. Materials Chemistry & Physics, 2006,95(1):39-50.
[6] NARAYANAN P A, ISHWARYA V, GOEL M, et al. Decolorization of disperse red 354 azo dye in water by several oxidation processes-a comparative study[J]. Dyes & Pigments, 2018,17(1):117-121.
[7] 封严, 肖长发. 聚甲基丙烯酸酯吸油纤维的研究[J]. 合成纤维工业, 2004,27(1):1-4.
FENG Yan, XIAO Changfa. Polymethacrylate oil-absorbing fiber research[J]. Synthetic Fiber Industry, 2004,27(1):1-4.
[8] 陈艺章, 贾明印, 郭朝霞, 等. 聚酯胺改善聚甲基丙烯酸甲酯电纺纤维均匀性研究[J]. 高分子学报, 2010,1(4):474-478.
CHEN Yizhang, JIA Mingyin, GUO Zhaoxia. Study on improvement of uniformity of polymethyl methacrylate electrospun fiber by polyester amine[J]. Acta Polymerica Sinica, 2010,1(4):474-478.
[9] 刘明, 薛袁, 蔡银莲, 等. β-环糊精/聚丙烯酸酯纳米纤维膜的耐水性及其对重金属离子的捕集[J]. 纺织学报, 2016,37(9):1-5.
LIU Ming, XUE Yuan, CAI Yinlian, et al. Water resistance of β-cyclodextrin/polyacrylate nanofiber membrane and its trapping of heavy metal ions[J]. Journal of Textile Research, 2016,37(9):1-5.
doi: 10.1177/004051756703700101
[10] JIANG X, HUANG J. Adsorption of rhodamine B on two novel polar-modified post-cross-linked resins: equilibrium and kinetics[J]. Journal of Colloid & Interface Science, 2016,467(1):230-238.
[11] FERREIRA B F, CIUFFI K J, NASSAR E J, et al. Kaolinite-polymer compounds by grafting of 2-hydroxyethyl methacrylate and 3-(trimethoxysilyl)propyl methacrylate[J]. Applied Clay Science, 2017,146(15):526-534.
[12] ZHANG X B, DONG J X, HAO Z C, et al. Fe-Mn/MCM-41: preparation, characterization, and catalytic activity for methyl orange in the process of heterogeneous fenton reaction[J]. Transactions of Tianjin University, 2018,24(4):361-369.
[13] CHEN Z W, JIAO Z, PAN D Y, et al. Recent advances in manganese oxide nanocrystals: fabrication, characterization, and microstructure[J]. Chemical Reviews, 2012,112(7):3833-3855.
doi: 10.1021/cr2004508 pmid: 22462582
[14] XU N K, ZHANG X Q, XIAO C F. The combination of amorphous manganese oxide and hollow fiber with enhanced activity and stable reusability as heterogeneous catalyst for dye oxidation[J]. Journal of Inorganic & Organometallic Polymers & Materials, 2018,28(6):2505-2517.
[15] DAS S, SAMANTA A, JANA S. Light-assisted synjournal of hierarchical flower-like MnO2 nanocomposites with solar light induced enhanced photocatalytic activity[J]. ACS Sustainable Chemistry & Engineering, 2017,5(10):9086-9094.
[16] CAO G S, SU L, ZHANG X J, et al. Hydrothermal synjournal and catalytic properties of α-MnO2 and β-MnO2 nanorods[J]. Materials Research Bulletin, 2010,45(4):425-428.
[17] 朱卡克. 介孔分子筛中过渡金属氧化物的可控制备及催化性能研究[D]. 上海: 复旦大学, 2003: 60-74.
ZHU Kake. Controllable preparation and catalytic performance of transition metal oxides in mesoporous molecular sieves[D]. Shanghai: Fudan University, 2003: 60-74.
[18] SONG H Y, YOU J A, CHEN C X, et al. Manganese functionalized mesoporous molecular sieves Ti-HMS as a fenton-like catalyst for dyes wastewater purification by advanced oxidation processes[J]. Journal of Environmental Chemical Engineering, 2016,4(4):4653-4660.
doi: 10.1016/j.jece.2016.09.039
[19] PRABUNATHAN P, SETHURAMAN K, ALAGAR M. MnO2-doped, polyaniline-grafted rice husk ash nanocomposites and their electrochemical capacitor applications[J]. Rsc Advances, 2014,88(4):47726-47734.
[20] WANG N H, LO S L. Preparation, characterization and adsorption performance of cetyltrimethylammonium modified birnessite[J]. Applied Surface Science, 2014,299(1):123-130.
[21] TANG Q W, JIANG L H, LIU J, et al. Effect of surface manganese valence of manganese oxides on the activity of the oxygen reduction reaction in alkaline media[J]. ACS Catalysis, 2014,4(2):457-463.
[22] GOPI T, SWETHA G, SHEKAR S C, et al. Catalytic decomposition of ozone on nanostructured potassium and proton containing δ-MnO2 catalysts[J]. Catalysis Communications, 2017,92(1):51-55.
[23] SUN M, LAN B, LIN T, et al. Controlled synjournal of nanostructured manganese oxide: crystalline evolution and catalytic activities[J]. Crystengcomm, 2013,15(35):7010-7018.
[1] 梅硕, 李金超, 卢士艳, 肖长发, 杨勇, 冯向伟. 高强度聚氯乙烯中空纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 16-20.
[2] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/ 聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[3] 李阵群, 许多, 魏春艳, 钱永芳, 吕丽华. 棉秆皮纤维素/ 氧化石墨烯纤维的制备及其力学性能和吸附性能 [J]. 纺织学报, 2020, 41(01): 15-20.
[4] 徐春霞, 降帅, 韩阜益, 徐芳, 刘丽芳. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10): 20-25.
[5] 韩烨, 张辉, 朱国庆, 武海良. 聚乙二醇对硫酸钛水热改性涤纶光催化性能的影响[J]. 纺织学报, 2019, 40(10): 33-41.
[6] 萧传敏, 肖长发, 张泰, 王新亚. 编织管增强型聚乳酸中空纤维膜结构及其性能[J]. 纺织学报, 2019, 40(08): 20-26.
[7] 李娜娜, 鲁清晨, 尹巍巍, 肖长发. 冷却温度对聚偏氟乙烯/超高分子量聚乙烯共混中空纤维膜结构与性能的影响[J]. 纺织学报, 2019, 40(07): 8-12.
[8] 周存 李叶燃 马悦 王闻宇 金欣 肖长发. 二氧化钛负载聚酯织物的制备及其光催化性能[J]. 纺织学报, 2018, 39(11): 91-95.
[9] 王建坤 郭晶 张昊 郑帼. 交联氨基淀粉对亚甲基蓝染料的吸附性能[J]. 纺织学报, 2018, 39(11): 103-110.
[10] 张建青 黄庆林 肖长发 . 减压膜蒸馏用于纤维素溶剂 N-甲基吗啉-N-氧化物浓缩回收研究[J]. 纺织学报, 2017, 38(08): 16-22.
[11] 王峰 朱海霖 张华鹏 陈建勇 郭玉海. 聚四氟乙烯包缠中空纤维膜的制备及其亲水改性[J]. 纺织学报, 2016, 37(2): 35-38.
[12] 张磊 郝露 徐山青. 废旧织物制备活性炭对亚甲基蓝的吸附动力学[J]. 纺织学报, 2016, 37(12): 76-80.
[13] 阙亦云 李兆敏 朱姝 余木火 赵改平. 介入医疗器械用聚醚嵌段酰胺中空纤维的凝聚态结构与性能[J]. 纺织学报, 2016, 37(01): 1-5.
[14] 郭玉海 朱海霖 王峰 唐红艳 张华鹏. 聚四氟乙烯滤膜的发展及应用[J]. 纺织学报, 2015, 36(09): 149-153.
[15] 兰平, 闻屹立, 汪蔚, 黄小军. 聚醚砜中空纤维膜的制备及其性能[J]. 纺织学报, 2012, 33(5): 20-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!