纺织学报 ›› 2020, Vol. 41 ›› Issue (03): 91-99.doi: 10.13475/j.fzxb.20190501809

• 染整与化学品 • 上一篇    下一篇

活性墨水流体特性对喷射性能的影响

侯学妮1, 陈国强1,2(), 邢铁玲1,2   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215006
    2.苏州大学 现代丝绸国家工程实验室, 江苏 苏州 215123
  • 收稿日期:2019-05-09 修回日期:2019-11-12 出版日期:2020-03-15 发布日期:2020-03-27
  • 通讯作者: 陈国强
  • 作者简介:侯学妮(1985—),女,助理研究员,博士生。主要研究方向为活性墨水的稳定性和喷射性能。
  • 基金资助:
    国家重点研发计划资助项目(2017YFB0309800);中国纺织工业联合会应用基础研究项目(J201605);江苏省“六大人才高峰”高层次人才项目(JNHB-066)

Influence of physical property of reactive ink fluid on jetting behavior

HOU Xueni1, CHEN Guoqiang1,2(), XING Tieling1,2   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215006, China
    2. National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2019-05-09 Revised:2019-11-12 Online:2020-03-15 Published:2020-03-27
  • Contact: CHEN Guoqiang

摘要:

为了研究活性墨水流体特性、高分子聚合物和表面活性剂对墨滴喷射性能及墨滴参数的影响,配制不同黏度、不同表面张力、不同分子质量聚乙烯吡咯烷酮(PVP)和不同表面活性剂的活性红墨水,利用墨滴观测系统观察墨滴喷射形成过程及飞行轨迹,并对墨滴系带长度、断裂时间、斜喷角度、墨滴速度和体积等参数进行分析。结果表明:随着墨水黏度的增加,墨滴断裂时间明显增加,墨滴速度和体积变小,黏度的增加有利于抑制卫星墨滴的形成,但大于4.56 mPa·s会影响喷射的流畅性;表面张力大于49.1 mN/m不利于墨滴的形成,会出现斜喷现象;与PVP-K15和PVP-K30相比,PVP-K60的加入会引起墨水在喷射过程中回缩而无法形成墨滴。

关键词: 喷墨印花, 喷射性能, 活性墨水, 流体性能, 表面活性剂

Abstract:

In order to study the effect of reactive ink fluid properties, polymer and surfactant on the ink jet formation process and the ink drops parameters, reactive red inks with different levels of viscosity, different surface tension, different molecular weight polyvinylpyrrolidone (PVP) and different surfactants were prepared. The formation process and flight trajectory of ink jet was observed and the parameters such as the length of ligament, breaking time of ink droplets, oblique angle, ink drop velocity and volume were calculated and analyzed using the drop observation system. The results show that with the increased the ink viscosity, the breaking time of the ink droplet demonstrated an obvious increase, and decreases in the velocity and volume of the ink droplet. The increase of viscosity is beneficial to inhibit the formation of ink droplets, but viscosity greater than 4.56 mPa·s will affect the smoothness of injection. Surface tension greater than 49.1 mN/m is not beneficial to the formation of ink droplets leading to oblique spray. Compared to the use of PVP-K15 and PVP-K30, the addition of PVP-K60 causes the droplet to retract in the jet and fail to form a droplet.

Key words: inject printing, jetting behavior, reactive ink, fluid physical properties, surfactant

中图分类号: 

  • TS194.4

图1

墨滴喷射观测装置"

图2

墨水的黏度随剪切速率变化图"

图3

墨水的剪切应力随剪切速率变化图"

图4

黏度对墨滴喷射过程液滴形态的影响"

图5

不同黏度墨滴喷射过程的飞行轨迹"

表1

黏度对墨滴参数的影响"


黏度/
(mPa·s)
表面张力/
(mN·m-1)
t1/
μs
t2/
μs
ν/
(m·s-1)
V/
pL
θ/
(°)
1 1.51 33.6 12.00 30 4.17 6.52 0.871
2 2.59 34.3 12.75 28 3.73 5.93 0.356
3 3.60 34.6 13.75 25 3.32 5.42 0.031
4 4.56 34.5 15.00 23 2.73 5.17 0.410
5 5.61 34.2 16.50 21 2.45 4.93 0.116
6 6.49 33.7 18.00 20 1.52 4.45 0.707

图6

黏度对系带长度的影响"

图7

黏度对墨滴喷射流畅性的影响"

图8

表面张力对墨滴喷射过程液滴形态的影响"

图9

表面张力对墨滴喷射过程飞行轨迹的影响"

表2

表面张力对墨滴参数的影响"


黏度/
(mPa·s)
表面张力/
(mN·m-1)
t1/
μs
t2/
μs
ν/
(m·s-1)
V/
pL
θ/
(°)
1 3.43 25.8 14.00 25 3.34 5.43 0.467
2 3.36 31.8 13.25 25 3.32 5.47 0.090
3 3.44 37.6 13.50 24 3.37 5.45 0.170
4 3.38 43.1 13.25 24 3.30 5.45 0.297
5 3.47 49.1 13.00 23 2.99 5.42 2.885
6 3.49 56.5 13.00 18 2.85 5.59 4.615

图10

表面张力对墨滴喷射流畅性的影响"

表3

聚合物和表面活性剂对墨滴参数的影响"

种类 黏度/
(mPa·s)
表面张力/
(mN·m-1)
t1/
μs
t2/
μs
ν/
(m·s-1)
V/
pL
θ/
(°)
PVP-K15 3.85 33.3 13.5 25 5.17 3.07 0.122
PVP-K30 3.89 33.9 14.0 24 5.15 2.86 0.041
PVP-K60 3.78 34.4
Surfynol 465 3.31 33.9 13.5 28 5.42 3.30 0.092
Dynol 604 3.14 33.7 12.5 23 5.46 3.29 0.382
Plurafac LF 901 2.99 33.1 13.0 24 5.48 3.38 0.341

图11

聚合物和表面活性剂对墨滴喷射过程墨滴形态的影响"

图12

聚合物和表面活性剂对墨滴飞行轨迹的影响"

图13

聚合物和表面活性剂对墨滴喷射流畅性的影响"

[1] 宋亚伟, 房宽峻, 张建波, 等. 喷墨技术及其在纺织品印花中的应用进展[J]. 纺织学报, 2015,36(8):165-172.
SONG Yawei, FANG Kuanjun, ZHANG Jianbo, et al. Inkjet technology and its application in textile print-ing[J]. Journal of Textile Research, 2015,36(8):165-172.
[2] SINGHM, HAVERINEN H M, DHAGAT P, et al. Inkjet printing:process and its applications[J]. Advanced Materials, 2010,22:673-685.
[3] DERBY B. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution[J]. Annual Review of Materials Research, 2010,40(1):395-414.
[4] TSAI M H, HWANG W S, CHOU H H, et al. Effects of pulse voltage on inkjet printing of a silver nanopowder suspension[J]. Nanotechnology, 2008,19(33):335304.
pmid: 21730623
[5] WANG X, CARR W W, BUCKNALL D G, et al. Drop-on-demand drop formation of colloidal suspensions[J]. International Journal of Multiphase Flow, 2012,38(1):17-26.
[6] GANS B J D, KAZANCIOGLU E, MEYER W, et al. Ink-jet printing polymers and polymer libraries using micropipettes[J]. Macromolecular Rapid Communications, 2004,25(1):292-296.
[7] NALLAN H C, SADIE J A, KITSOMBOONLOHA R, et al. Systematic design of jettable nanoparticle-based inkjet inks: rheology, acoustics, and jettability[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2014,30(44):13470-13477.
doi: 10.1021/la502903y pmid: 25310729
[8] JANG D, KIM D, MOON J. Influence of fluid physical properties on ink-jet printability[J]. Langmuir, 2009,25:2629-2635.
doi: 10.1021/la900059m pmid: 19437746
[9] LIU Zundong, FANG Kuanjun, GAO Hongguo, et al. Effect of cotton fabric pretreatment on drop spreading and colour performance of reactive dye inks[J]. Coloration Technology, 2016,132:407-413.
[10] WOO K, JANG D, KIM Y, et al. Relationship between printability and rheological behavior of ink-jet conductive inks[J]. Ceramics International, 2013,39:7015-7021.
[11] ZHONG Yonghong, FANG Haisheng, MA Qianli, et al. Analysis of droplet stability after ejection from an inkjet nozzle[J]. Journal of Fluid Mechanics, 2018,845:378-391.
[12] LI Min, ZHANG Liping, WANG Datong, et al. Influence of nano-coated pigment ink formulation on ink-jet printability and printing accuracy[J]. Coloration Technology, 2017,133:476-484.
[13] 王大同, 张丽平, 田安丽, 等. 纳米包覆颜料多相流体的喷墨行为[J]. 纺织学报, 2015,36(10):67-72.
WANG Datong, ZHANG Liping, TIAN Anli, et al. Ink-jetting properties of nano coated pigment multiphase fluid[J]. Journal of Textile Research, 2015,36(10):67-72.
[14] PARK J Y, HIRATA Y, HAMADA K. Relationship between the dye/additive interaction and inkjet ink droplet formation[J]. Dyes and Pigments, 2012,95(3):502-511.
[15] DU Zhonghui, YU Xinhong, HAN Yanchun. Inkjet printing of viscoelastic polymer inks[J]. Chinese Chemical Letters, 2018,29:399-404.
[16] DU Zhonghui, LIN Yangming, XING Rubo, et al. Controlling the polymer ink's rheological properties and viscoelasticity to suppress satellite droplets[J]. Polymer, 2018: 138, 75-82.
[17] 张桂芳, 付少海, 田安丽, 等. 添加剂/超细包覆分散染料液滴形成的影响因素[J]. 纺织学报, 2012,33(6):48-52.
ZHANG Guifang, FU Shaohai, TIAN Anli, et al. Study on droplets formation process of additives/capsulated super-fine disperse dye[J]. Journal of Textile Research, 2012,33(6):48-52.
[18] HOATH S D, JUNG S, HSIAO W K, et al. How PEDOT: PSS solutions produce satellite-free inkjets[J]. Organic Electronics, 2012 (13):3259-3262.
[19] DONG Hongming, CARR W W. An experimental study of drop-on-demand drop formation[J]. Physics of Fluids 2006,18:072102.
[20] 刘春格, 唐正宁. 基于压电喷墨印刷的墨滴速度大小的理论研究[J]. 包装工程, 2010,31(15):36-38.
LIU Chunge, TANG Zhengning. Theoretical research of the nk doplet vlocity based on piezoelectric inkjet print-ing[J]. Packing Engineering, 2010,31(15):36-38.
[21] FILLMORE G L. Drop velocity from an ink-jet nozzle[J]. IEEE Transactions on Industry Applications, 1983,19(6):1098-1103.
[22] 安亚洁, 李敏, 杜长森, 等. 微量墨滴在蚕丝机织物上的扩散行为[J]. 纺织学报, 2018,39(4):88-92.
AN Yajie, LI Min, DU Changsen, et al. Diffusion behavior of micro droplet on silk woven fabrics[J]. Journal of Textile Research, 2018,39(4):88-92.
[23] 石利琴. 影响喷墨印刷质量的关键因素分析[J]. 包装工程, 2005,26(4):45-47.
SHI Liqin. Analysis of the key factors influencing on the ink-jet printing quality[J]. Packaging Engineering, 2005,26(4):45-47.
[24] XU Changxue, ZHANG Meng, HUANG Yong, et al. Study of droplet formation process during drop-on-demand ink jetting of living cell-laden bioink[J]. Langmuir, 2014,30:9130-9138
doi: 10.1021/la501430x pmid: 25005170
[25] HOATH S D, HUTCHINGS I M, MARTIN G D. Links between ink rheology, drop-on-demand jet formation, and printability[J]. Journal of Imaging Science and Technology, 2009,53(4):041208.
[1] 张炜, 毛庆楷, 朱鹏, 柴雄, 李惠军. 乙醇/ 水体系中改性蚕丝织物的活性染料染色动力学和热力学[J]. 纺织学报, 2020, 41(06): 86-92.
[2] 柳健, 毛金露, 彭丽, 蔡凌云, 郑旭明, 张富山. 聚乙烯-聚丙烯非织造布亲水油剂的性能及其调控[J]. 纺织学报, 2019, 40(09): 114-121.
[3] 杨海贞, 房宽峻, 刘秀明, 蔡玉青, 安芳芳, 韩双. 棉织物组织结构对墨滴铺展及颜色性能的影响[J]. 纺织学报, 2019, 40(07): 78-84.
[4] 安芳芳, 房宽峻, 刘秀明, 蔡玉青, 韩双, 杨海贞. 羊毛织物的蛋白酶改性对墨滴铺展及颜色性能的影响[J]. 纺织学报, 2019, 40(06): 58-63.
[5] 杨海贞, 房宽峻, 刘秀明, 蔡玉青, 安芳芳, 韩双. 喷墨印花预处理对织物组织结构的影响[J]. 纺织学报, 2019, 40(05): 84-90.
[6] 田全慧, 顾萍, 朱明. 波段分区的数码喷墨印花机光谱特性化模型[J]. 纺织学报, 2019, 40(04): 140-144.
[7] 方玮 徐岚. 漏斗式喷气静电纺聚乙烯吡咯烷酮纳米纤维膜的制备及其表征[J]. 纺织学报, 2018, 39(10): 7-11.
[8] 安亚洁 李敏 杜长森 田安丽 张奕 付少海. 微量墨滴在蚕丝机织物上的扩散行为[J]. 纺织学报, 2018, 39(04): 87-92.
[9] 孟一丁 邵建中 黄益 王成龙 孙广东. 一体化聚氨酯丙烯酸酯的合成及其在光固化数码印花中的应用[J]. 纺织学报, 2018, 39(02): 97-105.
[10] 王大同 张丽平 李敏 谭莹 付少海. 喷墨参数对包覆颜料墨水印花清晰度的影响[J]. 纺织学报, 2016, 37(08): 72-76.
[11] 吴清涛 王北福 姜洪涛 聂立宏. 超声时间对聚偏氟乙烯/SiO2平板膜性能和结构的影响[J]. 纺织学报, 2016, 37(07): 28-33.
[12] 陈少瑜 张婉 王潮霞. 烷基胍开关控制循环涂料泡沫染色机制及性能[J]. 纺织学报, 2015, 36(02): 71-76.
[13] 吕继红 鄢友娟 汝新伟 肖红. 军警迷彩图案和面料印花技术的特点及发展[J]. 纺织学报, 2015, 36(02): 158-163.
[14] 付少海 王大同 杜长森 张丽平 关玉 许翠玲. 提高喷墨印花颜料墨水印花牢度的方法[J]. 纺织学报, 2015, 36(02): 141-147.
[15] 房宽峻 刘尊东 陈伟 张健飞 刘秀明 蔡玉青. 棉织物表面处理对活性染料喷墨印花的影响[J]. 纺织学报, 2015, 36(02): 128-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!