纺织学报 ›› 2021, Vol. 42 ›› Issue (10): 190-198.doi: 10.13475/j.fzxb.20200808109

• 综合述评 • 上一篇    

低热辐射环境中消防服系统内热传递机制的研究进展

张文欢1, 李俊1,2()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.现代服装设计与技术教育部重点实验室(东华大学), 上海 200051
  • 收稿日期:2020-08-20 修回日期:2021-01-06 出版日期:2021-10-15 发布日期:2021-10-29
  • 通讯作者: 李俊
  • 作者简介:张文欢(1993—),女,博士生。主要研究方向为服装舒适性与功能。
  • 基金资助:
    中央高校基本科研业务费专项基金项目(2232021G-08)

Research progress in heat transfer mechanism of firefighter protective clothing under low-level radiant heat exposures

ZHANG Wenhuan1, LI Jun1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2020-08-20 Revised:2021-01-06 Published:2021-10-15 Online:2021-10-29
  • Contact: LI Jun

摘要:

为有效避免低热辐射环境中消防作业人员遭受热损伤,揭示消防服系统内复杂的热交换机制并由此指导产品设计与开发,由消防服系统传热理论出发,从消防服织物基本性能和服装的款式特征、人体的形态结构与活动状态、辐射热源的特征以及热湿耦合作用4个角度对当前的研究进展进行了回顾与讨论。基于对以往研究中存在的难点和瓶颈问题的分析,提炼出未来研究中值得探索的方向,包括:非均匀空气层的分布与模拟方法的升级、非稳态人体运动和环境风形成的气流场和速度场变化规律及其与传热的关系、耦合人体热调节模型拓展服装传热机制研究的内涵3个层面。

关键词: 低热辐射, 消防服, 热防护性能, 热传递机制, 热湿传递

Abstract:

In order to effectively achieve the control of the thermal damage to the firefighting workers in low heat radiative environment, the complex heat exchange mechanism in the firefighting clothing system, were reviewed to guide product design and development. Based on the heat transfer theory of fire-fighting clothing system, the current research progress was reviewed and discussed from four perspectives, including the basic performance of fire-fighting clothing fabrics and the style of clothing, the morphology and activity of the human body, the characteristics of radiant heat sources, and the coupling effect of heat and moisture. Based on the analysis of the difficulties and bottlenecks in the previous research, the research directions worth exploring for the future were refined, which are the distribution of inhomogeneous air layers and the upgrading of simulation methods, the air flow and velocity field formed by unsteady human motion and environmental wind as well as the relationship between the air flow and heat flow, expanding the connotation of clothing heat transfer mechanism research by coupling human thermo-regulational model.

Key words: low radiant heat exposure, firefighter protective clothing, thermal protective performance, heat transfer mechanism, heat and moisture transfer

中图分类号: 

  • TS941.73
[1] SATI R, CROWN E M, GONZALEZ J, et al. Protection from steam at high pressures: development of a test device and protocol[J]. International Journal of Occupational Safety and Ergonomics, 2008, 14(1):29-41.
doi: 10.1080/10803548.2008.11076748
[2] LU Y, SONG G, ACKERMAN M Y, et al. A new protocol to characterize thermal protective performance of fabrics against hot liquid splash[J]. Experimental Thermal and Fluid Science, 2013, 46:37-45.
doi: 10.1016/j.expthermflusci.2012.11.018
[3] 张梦莹, 苗勇, 李俊. 防火服热蓄积的影响因素及其测评方法[J]. 纺织学报, 2016, 37(6):171-176.
ZHANG Mengying, MIAO Yong, LI Jun. Influence factors and evaluation methods of stored thermal energy in firefighters protective clothing[J]. Journal of Textile Research, 2016, 37(6):171-176.
[4] BARKER R. A review of gaps and limitations in test methods for first responder protective clothing and equipment[R]. North Carolina: National Institute for Occupational Safety and Health, 2005: 1-101.
[5] BARKER H. Effects of moisture on the thermal protective performance of firefighter protective clothing in low-level radiant heat exposures abstract[J]. Textile Research Journal, 2006, 76(1):27-31.
doi: 10.1177/0040517506053947
[6] BARKER R L, DEATON A S, ROSS K A. Heat transmission and thermal energy storage in firefighter turnout suit materials[J]. Fire Technology, 2011, 47(3):549-563.
doi: 10.1007/s10694-010-0151-3
[7] PERKINS R M. Insulative values of single-layer fabrics for thermal protective clothing[J]. Textile Research Journal, 1979, 49(4):202-212.
doi: 10.1177/004051757904900404
[8] SAWCYN C M J, TORVI D A. Improving heat transfer models of air gaps in bench top tests of thermal protective fabrics[J]. Textile Research Journal, 2009, 79(7):632-644.
doi: 10.1177/0040517508093415
[9] WATSON K. From radiant protective performance to RadManTM: the role of clothing materials in protecting against radiant heat exposures in wildland forest fires[D]. North Carolina: North Carolina State University, 2014: 1-98.
[10] FU M, WENG W, YUAN H. Effects of multiple air gaps on the thermal performance of firefighter protective clothing under low-level heat exposure[J]. Textile Research Journal, 2014, 84(9):968-978.
doi: 10.1177/0040517513512403
[11] ŁAPKA P, FURMANSKI P. Modeling and analysis of the influence of the protective garment movement on the skin temperature and burn degree[J]. Fire Safety Journal, 2020, 111:1-16.
[12] MERT E, PSIKUTA A, BUENO M A, et al. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment[J]. International Journal of Biometeorology, 2015, 59(11):1701-1710.
doi: 10.1007/s00484-015-0978-x
[13] SU Y, LI R, SONG G, et al. Modeling steam heat transfer in thermal protective clothing under hot steam exposure[J]. International Journal of Heat and Mass Transfer, 2018, 120:818-829.
doi: 10.1016/j.ijheatmasstransfer.2017.12.074
[14] LI J, LU Y, LI X. Effect of relative humidity coupled with air gap on heat transfer of flame-resistant fabrics exposed to flash fires[J]. Textile Research Journal, 2012, 82(12):1235-1243.
doi: 10.1177/0040517512436830
[15] FU M, WENG W G, YUAN H Y. Quantitative assessment of the relationship between radiant heat exposure and protective performance of multilayer thermal protective clothing during dry and wet condi-tions[J]. Journal of Hazardous Materials, 2014, 276:383-392.
doi: 10.1016/j.jhazmat.2014.05.056
[16] GUAN M, PSIKUTA A, CAMENZIND M, et al. Effect of perspired moisture and material properties on evaporative cooling and thermal protection of the clothed human body exposed to radiant heat[J]. Textile Research Journal, 2019, 89(18):3663-3676.
doi: 10.1177/0040517518817067
[17] FU M, WENG W, HAN X. Effects of moisture transfer and condensation in protective clothing based on thermal manikin experiment in fire environment[J]. Procedia Engineering, 2013, 62:760-768.
doi: 10.1016/j.proeng.2013.08.123
[18] BRÖDE P, KUKLANE K, CANDAS V, et al. Heat gain from thermal radiation through protective clothing with different insulation, reflectivity and vapour permeabi-lity[J]. International Journal of Occupational Safety and Ergonomics, 2010, 16(2):231-244.
doi: 10.1080/10803548.2010.11076842
[19] FU M. Comparison of bench-scale and manikin tests of protective clothing systems during low-level radia-tion[C]// Fire Science and Technology 2015: The Proceedings of 10th Asia-Oceania Symposium on Fire Science and Technology. Tsukuba: AOAFST, 2015: 485-490.
[20] YANG J, SU Y, SONG G, et al. A new approach to predict heat stress and skin burn of firefighter under low-level thermal radiation[J]. International Journal of Thermal Sciences, 2019, 145:1-10.
[21] SUN G, YOO H S, ZHANG X S, et al. Radiant protective and transport properties of fabrics used by wildland firefighters[J]. Textile Research Journal, 2000, 70(7):567-573.
doi: 10.1177/004051750007000702
[22] MANDAL S, SONG G, ACKERMAN M, et al. Characterization of textile fabrics under various thermal exposures[J]. Textile Research Journal, 2013, 83(10):1005-1019.
doi: 10.1177/0040517512461707
[23] GUAN M, ANNAHEIM S, CAMENZIND M, et al. Moisture transfer of the clothing-human body system during continuous sweating under radiant heat[J]. Textile Research Journal, 2019, 89(21/22):4537-4553.
doi: 10.1177/0040517519835767
[24] ROSSI R M, BOLLI W P. Assessment of radiant heat protection of firefighters'jackets with a manikin[M]. PA: ASTM International, 2000: 212-223.
[25] SONG G, PASKALUK S, SATI R, et al. Thermal protective performance of protective clothing used for low radiant heat protection[J]. Textile Research Journal, 2011, 81(3):311-323.
doi: 10.1177/0040517510380108
[26] HE J, LI J, KIM E. Assessment of the heat and moisture transfer in a multilayer protective fabric system under various ambient conditions[J]. Textile Research Journal, 2015, 85(3):227-237.
doi: 10.1177/0040517514545255
[27] SU Y, HE J, LI J. Modeling the transmitted and stored energy in multilayer protective clothing under low-level radiant exposure[J]. Applied Thermal Engineering, 2016, 93:1295-1303.
doi: 10.1016/j.applthermaleng.2015.10.089
[28] HE J, LI J. Analyzing the transmitted and stored energy through multilayer protective fabric systems with various heat exposure time[J]. Textile Research Journal, 2016, 86(3):235-244.
doi: 10.1177/0040517515588272
[29] HE J, LU Y, YANG J. Quantification of the energy storage caused dual performance of thermal protective clothing containing with moisture exposed to hot steam[J]. Energy Science and Engineering, 2019, 7(6):2585-2595.
doi: 10.1002/ese3.v7.6
[30] DORMAN L, HAVENITH G, BROEDE P. Modelling the metabolic effects of protective clothing[C]// 3rd European Confereetive Clothing(ECPC). Poland: Loughborough's In Stitutional Repository Ltd, 2006, 82-85.
[31] MANDAL S, ANNAHEIM S, CAMENZIND M, et al. Characterization and modelling of thermal protective performance of fabrics under different levels of radiant-heat exposures[J]. Journal of Industrial Textiles, 2019, 48(7):1184-1205.
doi: 10.1177/1528083718760801
[32] 万志琴. 织物有效辐射系数的理论探讨与实验研究[J]. 纺织学报, 1999, 20(4):224-232.
WAN Zhiqin. Theoretical and experimental study on effective radiation coefficient of fabric[J]. Journal of Textile Research, 1999, 20(4):224-232.
[33] TORVI D, REZAZADEH M, BESPFLUG C. Effects of convective and radiative heat sources on thermal response of single- and multiple-layer protective fabrics in benchtop tests[C]// SHIELS B, LEHTONEN K. Performance of Protective Clothing and Equipment: 10th Volume, Risk Reduction Through Research and Testing. PA: ASTM International, 2016: 131-158.
[34] HAGER N E, STEERE R C. Radiant heat transfer in fibrous thermal insulation[J]. Journal of Applied Physics, 1967, 38(12):4663-4668.
doi: 10.1063/1.1709200
[35] TONG T W, TIEN C L. Analytical models for thermal radiation in fibrous insulations[J]. Journal of Thermal Envelope and Building Science, 1980, 4(1):27-44.
[36] TORVI D A. A finite element model of skin subjected to a flash fire[D]. Alberta: University of Alberta, 1994, 1-147.
[37] ZHU F, ZHANG W, SONG G. Heat transfer in a cylinder sheathed by flame-resistant fabrics exposed to convective and radiant heat flux[J]. Fire Safety Journal, 2008, 43(6):401-409.
doi: 10.1016/j.firesaf.2007.11.007
[38] FU M, YUAN M Q, WENG W G. Modeling of heat and moisture transfer within firefighter protective clothing with the moisture absorption of thermal radiation[J]. International Journal of Thermal Sciences, 2015, 96:201-210.
doi: 10.1016/j.ijthermalsci.2015.05.008
[39] REISCHL U, STRANSKY A. Comparative assessment of GORETEXTM and NEOPRENETM vapor barriers in a firefighter turn-out coat[J]. Textile Research Journal, 1980, 50(11):643-647.
doi: 10.1177/004051758005001101
[40] REISCHL U, STRANSKY A, TRAVIS R. Advanced prototype firefighter protective clothing: heat dissipation characteristics[J]. Textile Research Journal, 1982, 52(1):66-73.
doi: 10.1177/004051758205200110
[41] LI J, BARKER R L, DEATON A S. Evaluating the effects of material component and design feature on heat transfer in firefighter turnout clothing by a sweating manikin[J]. Textile Research Journal, 2007, 77(2):59-66.
doi: 10.1177/0040517507078029
[42] MCQUERRY M, BARKER R, DENHARTOG E. Functional design and evaluation of structural firefighter turnout suits for improved thermal comfort: thermal manikin and physiological modeling[J]. Clothing and Textiles Research Journal, 2018, 36(3):165-179.
doi: 10.1177/0887302X18757348
[43] MEREDITH M, DEN HARTOG E, BARKER R, et al. A review of garment ventilation strategies for structural firefighter protective clothing[J]. Textile Research Journal, 2016, 86(7):727-742.
doi: 10.1177/0040517515595029
[44] 卢业虎. 高温液体环境下热防护服装热湿传递与皮肤烧伤预测[D]. 上海: 东华大学, 2013: 22-56.
LU Yehu. Study on heat and mass transfer of thermal protective clothing and prediction of skin burn upon hot liquid splashes[D]. Shanghai: Donghua University, 2013:22-56.
[45] 苏云, 王云仪, 李俊. 消防服衣下空气层热传递机制研究进展[J]. 纺织学报, 2016, 37(1):167-172.
SU Yun, WANG Yunyi, LI Jun. Research progress of heat transfer mechanism of air gap under firefighter protective clothing[J]. Journal of Textile Research, 2016, 37(1):167-172.
[46] UDAYRAJ, TALUKDAR P, DAS A, et al. Numerical modeling of heat transfer and fluid motion in air gap between clothing and human body: effect of air gap orientation and body movement[J]. International Journal of Heat and Mass Transfer, 2017, 108:271-291.
doi: 10.1016/j.ijheatmasstransfer.2016.12.016
[47] ZHU F L, ZHANG W Y. Evaluation of thermal performance of flame-resistant fabrics considering thermal wave influence in human skin model[J]. Journal of Fire Sciences, 2006, 24(6):465-486.
doi: 10.1177/0734904106062355
[48] SU Y, LI J, WANG Y. Effect of air gap thickness on thermal protection of firefighter's protective clothing against hot steam and thermal radiation[J]. Fibers and Polymers, 2017, 18(3):582-589.
doi: 10.1007/s12221-017-6714-x
[49] GUAN M, LI J. Garment size effect of thermal protective clothing on global and local evaporative cooling of walking manikin in a hot environment[J]. International Journal of Biometeorology, 2020, 64(3):485-499.
doi: 10.1007/s00484-019-01836-5
[50] MAH T, SONG G. Investigation of the contribution of garment design to thermal protection: part 1: characterizing air gaps using three-dimensional body scanning for women's protective clothing[J]. Textile Research Journal, 2010, 80(13):1317-1329.
doi: 10.1177/0040517509358795
[51] HE H, YU Z C, SONG G. The effect of moisture and air gap on the thermal protective performance of fabric assemblies used by wildland firefighters[J]. Journal of the Textile Institute, 2016, 107(8):1030-1036.
[52] 黄冬梅, 何松. 空气层位置对消防战斗服隔热性能的影响[J]. 纺织学报, 2015, 36(10):113-119.
HUANG Dongmei, HE Song. Influence of air gap position of heat insulation performance of firefighter'protective clothing[J]. Journal of Textile Research, 2015, 36(10):113-119.
[53] HEUS R, DENHARTOG E A. Maximum allowable exposure to different heat radiation levels in three types of heat protective clothing[J]. Industrial Health, 2017, 55(6):529-536.
doi: 10.2486/indhealth.2017-0137
[54] SU Y, HE J, LI J. Numerical simulation of heat transfer in protective clothing with various heat exposure distances[J]. Journal of the Textile Institute, 2017, 108(8):1412-1420.
doi: 10.1080/00405000.2016.1254591
[55] LI J, TIAN M. Personal thermal protection simulation under diverse wind speeds based on life-size manikin exposed to flash fire[J]. Applied Thermal Engineering, 2016, 103:1381-1389.
doi: 10.1016/j.applthermaleng.2016.04.155
[56] EGBE U E. Developing test procedures for measuring stored thermal energy in firefighter protective clothing[D]. North Carolina: North Carolina State University, 2005: 1-65.
[57] DAS B, ARAUJO M De, KOTHARI V K, et al. Modeling and simulation of moisture transmission through fibrous structures: part II: liquid water transmission[J]. Journal of Fiber Bioengineering and Informatics, 2013, 6(4):383-404.
doi: 10.3993/jfbi
[58] DAS B, DE ARAUJO M, KOTHARI V K, et al. Modeling and simulation of moisture transmission through fibrous structures: part I: water vapour transmission[J]. Journal of Fiber Bioengineering and Informatics, 2012, 5(4):359-378.
doi: 10.3993/jfbi
[59] ŁAPKA P, FURMANSKI P, WISNIEWSKI T S. Numerical modelling of transient heat and moisture transport in protective clothing[J]. Journal of Physics: Conference Series, 2016, 676(1):1-15.
[60] ZHANG H, SONG G, REN H, et al. The effects of moisture on the thermal protective performance of firefighter protective clothing under medium intensity radiant exposure[J]. Textile Research Journal, 2018, 88(8):847-862.
doi: 10.1177/0040517517690620
[61] BARKER R L, GUERTH C, BEHNKE W P, et al. Measuring the thermal energy stored in firefighter protective clothing[J]. ASTM Special Technical Publication, 2000: 33-44.
[62] JASON A, STEVEN C D C. Thermal capacity of fire fighter protective clothing[R]. USA: [s.n], 2008, 1-37.
[63] LAWSON J R. Fire fighters's protective clothing and thermal environments of structural fire fighting[M]. PA: ASTM International, 1997: 334-352.
[64] KEISER C, ROSSI R M. Temperature analysis for the prediction of steam formation and transfer in multilayer thermal protective clothing at low level thermal radia-tion[J]. Textile Research Journal, 2008, 78(11):1025-1035.
doi: 10.1177/0040517508090484
[65] ROSSI R, INDELICATO E, BOLLI W. Hot steam transfer through heat protective clothing layers[J]. International Journal of Occupational Safety and Ergonomics, 2004, 10(3):239-245.
doi: 10.1080/10803548.2004.11076611
[66] TORVI D A, DALE J D, FAULKNER B. Influence of air gaps on bench-top test results of flame resistant fabrics[J]. Journal of Fire Protection Engineering, 1999, 10(1):1-12.
[67] LU Y, LI J, LI X, et al. The effect of air gaps in moist protective clothing on protection from heat and flame[J]. Journal of Fire Sciences, 2013, 31(2):99-111.
doi: 10.1177/0734904112457342
[68] YAMAMOTO G, TANAKA M, ASANO S. Radiative heat transfer in water clouds by infrared radiation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1971, 11(6):697-708.
doi: 10.1016/0022-4073(71)90048-3
[69] FU M. Combined effects of moisture and radiation on thermal performance of protective clothing experiments by a sweating manikin exposed to low level radiation[J]. International Journal of Clothing Science and Technology, 2014, 27(6):818-834.
doi: 10.1108/IJCST-05-2014-0064
[1] 张文欢 李俊. 低热辐射环境消防服系统内热传递机制的研究进展[J]. , 2021, 42(10): 0-0.
[2] 于志财, 刘金如, 何华玲, 马胜男, 姜会钰. 基于高分子水凝胶的阻燃织物研究与应用进展[J]. 纺织学报, 2021, 42(09): 180-186.
[3] 蒋璐璐, 邓梦, 王云仪, 李俊. 气凝胶材料在消防服中的应用研究进展[J]. 纺织学报, 2021, 42(09): 187-194.
[4] 王小波, 钱晓明, 王立晶, 刘永胜, 白赫. 液体冷却服研究进展及消防应用可行性研究[J]. 纺织学报, 2021, 42(06): 198-207.
[5] 王琦, 田苗, 苏云, 李俊, 余梦凡, 许霄. 开放/封闭空气层对阻燃织物热防护性能的影响[J]. 纺织学报, 2020, 41(12): 54-58.
[6] 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121.
[7] 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196.
[8] 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117.
[9] 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122.
[10] 邱浩, 苏云, 王云仪. 蒸汽暴露条件对织物热防护性能的影响[J]. 纺织学报, 2020, 41(01): 118-123.
[11] 侯玉莹, 李小辉. 防火服用蜂窝隔热层的热蓄积性能测评[J]. 纺织学报, 2019, 40(12): 109-113.
[12] 胡贝贝, 杜菲菲, 李小辉. 消防服用隔热层孔型结构优化与测评[J]. 纺织学报, 2019, 40(11): 140-144.
[13] 刘林玉, 陈诚毅, 王珍玉, 祝焕, 金艳苹. 消防服多层织物的热湿舒适性[J]. 纺织学报, 2019, 40(05): 119-123.
[14] 杜菲菲, 李小辉, 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019, 40(03): 133-138.
[15] 苏云, 杨杰, 李睿, 宋国文, 李俊, 张向辉. 热辐射暴露下消防员的生理反应及皮肤烧伤预测[J]. 纺织学报, 2019, 40(02): 147-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!