纺织学报 ›› 2021, Vol. 42 ›› Issue (06): 26-34.doi: 10.13475/j.fzxb.20210205109

所属专题: 印染废水处理技术

• 纺织科技新见解学术沙龙专栏: 纤维微塑料削减与可持续发展 • 上一篇    下一篇

纤维微塑料在印染废水产排污环节的赋存特征

徐晨烨1, 顾春节1, 倪亦凡1, 沈忱思1, 王华平2, 乌婧2, 李方1()   

  1. 1. 东华大学 环境科学与工程学院, 上海 201620
    2. 东华大学 材料科学与工程学院, 上海 201620
  • 收稿日期:2021-02-22 修回日期:2021-03-14 出版日期:2021-06-15 发布日期:2021-06-25
  • 通讯作者: 李方
  • 作者简介:徐晨烨(1990—),女,讲师,博士。主要研究方向为污染监测及健康评价。
  • 基金资助:
    国家重点研发计划项目(2020YFE0201400);国家自然科学基金项目(22006010)

Occurrence and release of fibrous microplastic from dyeing and printing wastewater

XU Chenye1, GU Chunjie1, NI Yifan1, SHEN Chensi1, WANG Huaping2, WU Jing2, LI Fang1()   

  1. 1. School of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
    2. School of Materials Science and Engineering, Donghua University, Shanghai 201620, China
  • Received:2021-02-22 Revised:2021-03-14 Published:2021-06-15 Online:2021-06-25
  • Contact: LI Fang

摘要:

印染废水的末端排放是自然水体中纤维微塑料的重要来源之一,为了解长三角印染行业纤维微塑料的产排特征和环境归趋,采集了22家印染企业调节池进水及末端出水样品,分析纤维微塑料的丰度、形态、聚合物类型及去除率。结果表明:纤维微塑料在进出水样品中的平均丰度为(7 504.8±5 685.9)及(1 272.7±782.2)个/L,其中聚对苯二甲酸乙二醇酯为主要贡献者,Kruskal-Wallis检验并未发现织物原材料对聚合物组成有显著影响;进水中100~300 μm和无色透明的纤维微塑料占主导,处理后出水中尺寸小于100 μm和有色纤维的比例有所上升,这与纤维微塑料的性能和末端处理截留效率有关;尽管末端处理对纤维微塑料的平均去除率可达(78.3±10.2)%,纤维微塑料通过印染末端废水的排放量为(3.88±5.75)×109个/d,由此带来的水体生态风险是持续且积累的。该研究结果可为我国纺织污染新型污染物的评估及进一步去除微塑料的工艺设计提供数据和参考。

关键词: 纤维微塑料, 纺织印染, 末端排放, 去除率, 风险评价, 印染废水

Abstract:

Fibrous microplastic (MP)derived from textile printing and dyeing industry are considered to be an important source of MPs in the aquatic environment. In order to understand the pollution emission characteristics and environmental behaviors of fibrous MP from the industry in the Yangtze River Delta, the regulation influent and end effluent samples from 22 textile printing and dyeing enterprises were collected to analyze the abundance, morphology, polymer types and removal efficiencies of fibrous MP. It was found that fibrous MP were occurred in all samples with average abundance of (7 504.8±5 685.9) and (1 272.7±782.2) n/L in influent and effluent samples, respectively. PET was the major polymer type, but no significant association was observed between raw materials and polymer compositions in wastewater. fibrous MP of sizes with 100-300 μm and with transparent color dominated the influent, but small-sized (<100 μm) and colored fibrous MP increased across the treatment systems, which was attributable to the fibers characterization and treatment pathways. Overall, the removal rates of fibrous MP were (78.3±10.2)%, removal efficiencies were positively correlated with sizes. Ecological risks assessment indicated that (3.88±5.75)×109 n/d fibrous MP from effluent were still released due to the huge daily capacity, which posed potential and lasting pressure on the aquatic environment. This findings from this research provide technical understanding on fibrous MP in wastewater effluents channel and their composition, and help optimize advanced treatment processes.

Key words: fibrous microplastics, textile and dyeing, effluent release, removal rate, risk assessment, dyeing and printing wastewater

中图分类号: 

  • TS102

图1

长三角地区采样点示意图"

图2

采样点印染废水进水和出水中微纤维丰度 注:图中从左至右样本编号依次为S1~S22。"

表1

不同地区印染企业及污水处理厂进出水中微纤维/微塑料丰度"

调查对象 目标污染物 丰度/(个·L-1) 去除率/% 参考文献
进水中 出水中
中国柯桥工业区
纺织印染企业
纤维微塑料 A厂:12 300
B厂:54 100
C厂:2 100
1 880
1 350
10
84.7
97.5
99.5
[13]
中国某纺织印染企业1 纤维微塑料 256.7 25 90.3 [20]
中国某纺织印染企业2 纤维微塑料 334.1 16.3 95.1 [21]
土耳其某城市污水处理厂 微塑料 Seyhan: 26.5±3.17 6.99±0.764 73 [22]
Yuregir: 23.4±4.10 4.11±0.318 79
加拿大温哥华城市污水处理厂 微塑料 31.1±6.7 0.5±0.2 99 [23]
英国格拉斯哥市镇污水处理厂 微塑料 15.7±5.23 0.25±0.04 98.41
初级:78.34;次级:20.1
[14]
韩国市镇污水厂 微塑料 A2O: 29 850 0.435 > 98 [24]
SBR: 16 450 0.140
Media: 13 865 0.280
芬兰市镇污水厂 微塑料 MBR: 6.9 0.005 99.9 [25]
砂滤:0.7 0.02 97
气浮:2.0 0.1 95
芬兰Kenkaveronniemi
市镇污水厂
纤维微塑料 52.6±11.3 0.3±0.1 99.4 [26]
微塑料 57.6±12.4 0.6±0.2 98.9

表2

原材料对末端废水材质残余量影响的Kruskal-Wallis检验"

原材料 PET PP PE PA
化学纤维 78.1±33.9 12.5±26.7 3.12±8.84 6.25±11.6
76.3±37.1 0.00±0.00 19.1±37.8 4.76±12.6
其他材料 77.1±37.3 8.57±15.7 7.14±18.9 7.14±18.9
Chi-square, p 0.005,0.995 0.880, 0.431 0.845,0.445 0.048,0.953

图3

采样点印染废水中的微纤维材质组成和纤维微塑料材质组成"

图4

印染废水纤维微塑料尺寸分布 注:各图中从左至右样本编号依次为S1~S22。"

图5

印染废水中纤维微塑料颜色组成 注:图中从左至右样本编号依次为S1~S22。"

图6

进水中透明与有色纤维不同尺寸分布"

图7

纤维微塑料的去除率与尺寸分布关系"

[1] BROWNE M A, CRUMP P, NIVEN S J, et al. Accumulation of microplastic on shorelines woldwide: sources and sinks[J]. Environmental Science & Technology, 2011, 45(21):9175-9179.
doi: 10.1021/es201811s
[2] SUNDT P, SCHULTZE F P E. Sources of microplastic- pollution to the marine environment[J]. Norwegian Environment Agency, 2014, 86:1-108.
[3] ROCHMAN C M, KUROBE T, FLORES I, et al. Early warning signs of endocrine disruption in adult fish from the ingestion of polyethylene with and without sorbed chemical pollutants from the marine environment[J]. Science of the Total Environment, 2014, 493:656-661.
doi: 10.1016/j.scitotenv.2014.06.051
[4] AVIO C G, GORBI S, MILAN M, et al. Pollutants bioavailability and toxicological risk from microplastics to marine mussels[J]. Environmental Pollution, 2015, 198:211-222.
doi: 10.1016/j.envpol.2014.12.021
[5] HORTON A A, WALTON A, SPURGEON D J, et al. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities[J]. Sciense of the Total Environment, 2017, 586:127-141.
[6] YUAN W, LIU X, WANG W, et al. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China[J]. Ecotoxicology and Environmental Safety, 2019, 170:180-187.
doi: 10.1016/j.ecoenv.2018.11.126
[7] THOMAS S, MATTHEW J, PAUL N, et al. Freshwater and airborne textile fibre populations are dominated by 'natural', not microplastic, fibres[J]. Science of the Total Environment, 2019, 666:377-389.
doi: 10.1016/j.scitotenv.2019.02.278
[8] RAGUSA A, SVELATO A, SANTACROCE C, et al. Plasticenta: first evidence of microplastics in human placenta[J]. Environment International, 2021, 146:106274.
doi: 10.1016/j.envint.2020.106274
[9] PRATA J C. Microplastics in wastewater: state of the knowledge on sources, fate and solutions[J]. Marine Pollution Bulletin, 2018, 129(1):262-265.
doi: 10.1016/j.marpolbul.2018.02.046
[10] XU C, ZHANG B, GU C, et al. Are we underestimating the sources of microplastic pollution in terrestrial environment? [J]. Journal of Hazardous Materials, 2020, 400:123228.
doi: 10.1016/j.jhazmat.2020.123228
[11] THOMPSON R C O Y, MITCHELL R P, DAVIS A, et al. Lost at sea: where is all the plastic? [J]. Science, 2004, 304:838.
doi: 10.1126/science.1094559
[12] NAPPER I E, THOMPSON R C. Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing condi-tions[J]. Marine Pollution Bulletin, 2016, 112(1/2):39-45.
doi: 10.1016/j.marpolbul.2016.09.025
[13] ZHOU H, ZHOU L, MA K. Microfiber from textile dyeing and printing wastewater of a typical industrial park in China: occurrence, removal and release[J]. Science of the Total Environment, 2020, 739:140329.
doi: 10.1016/j.scitotenv.2020.140329
[14] MURPHY F, EWINS C, CARBONNIER F, et al. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment[J]. Environmental Science & Technology, 2016, 50(11):5800-5808.
doi: 10.1021/acs.est.5b05416
[15] ZHAO S Y, ZHU L X, WANG T, et al. Suspended microplastics in the surface water of the Yangtze Estuary System, China: first observations on occurrence, distribution[J]. Marine Pollution Bulletin, 2014, 86(1/2):562-568.
doi: 10.1016/j.marpolbul.2014.06.032
[16] ZIAJAHROMI S, NEALE P A, RINTOUL L, et al. Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics[J]. Water Research, 2017, 112:93-99.
doi: 10.1016/j.watres.2017.01.042
[17] ZHAO S Y, DANLEY M, WARD J E, et al. An approach for extraction, characterization and quantitation of microplastic in natural marine snow using Raman microscopy[J]. Analytical Methods, 2016, 9(9):1470-1478.
doi: 10.1039/C6AY02302A
[18] 白濛雨, 赵世烨, 彭谷雨, 等. 城市污水处理过程中微塑料赋存特征[J]. 中国环境科学, 2018, 38(5):1734-1743.
BAI Mengyu, ZHAO Shiye, PENG Guyu, et al. Occurrence characteristics of microplastics in municipal sewage treatment[J]. China Environmental Science, 2018, 38(5):1734-1743.
[19] ISOBE A, KUBO K, TAMURA Y, et al. Selective transport of microplastics and mesoplastics by drifting in coastal waters[J]. Marine Pollution Bulletin, 2014, 89(1/2):324-330.
doi: 10.1016/j.marpolbul.2014.09.041
[20] 侯青桐, 许霞, 薛银刚, 等. 纺织印染废水处理工艺中微纤维分离及其微观特征[J]. 中国给水排水, 2019, 35(3):13-18.
HOU Qingtong, XU Xia, XUE Yingang, et al. Microfiber separation and microstructure characteristics in textile printing and dyeing wastewater treatment process[J]. China Water & Wastewater, 2019, 35(3):13-18.
[21] XU X, HOU Q, XUE Y, et al. Pollution characteristics and fate of microfibers in the wastewater from textile dyeing wastewater treatment plant[J]. Water Science and Technology, 2018, 78(10):2046-2054.
doi: 10.2166/wst.2018.476
[22] GUNDOGDU S, CEVIK C, GUZEL E, et al. Microplastics in municipal wastewater treatment plants in Turkey: a comparison of the influent and secondary effluent concentrations[J]. Environmental Monitoring and Assessment, 2018, 190(11):626.
doi: 10.1007/s10661-018-7010-y
[23] GIES E A, LENOBLE J L, NOEL M, et al. Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada[J]. Marine Pollution Bulletin, 2018, 133:553-561.
doi: 10.1016/j.marpolbul.2018.06.006
[24] LEE H, KIM Y. Treatment characteristics of microplastics at biological sewage treatment facilities in Korea[J]. Marine Pollution Bulletin, 2018, 137:1-8.
doi: 10.1016/j.marpolbul.2018.09.050
[25] TALVITIE J, MIKOLA A, KOISTINEN A, et al. Solutions to microplastic pollution-removal of microplastics from wastewater effluent with advanced wastewater treatment technologies[J]. Water Research, 2017, 123:401-407.
doi: 10.1016/j.watres.2017.07.005
[26] LARES M, NCIBI M C, SILLANPAA M, et al. Occurrence Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology[J]. Water Research, 2018, 133:236-246.
doi: 10.1016/j.watres.2018.01.049
[27] YUAN F, ZHAO H, SUN H, et al. Abundance, morphology, and removal efficiency of microplastics in two wastewater treatment plants in Nanjing, China[J]. Environmental Science and Pollution Research, 2020, 28(8):9327-9337.
doi: 10.1007/s11356-020-11411-w
[28] 贾其隆, 陈浩, 赵昕, 等. 大型城市污水处理厂处理工艺对微塑料的去除[J]. 环境科学, 2019, 40(9):259-266.
JIA Qilong, CHEN Hao, ZHAO Xin, et al. Removal of microplastics by treatment process of large-scale municipal sewage treatment plant[J]. Environmental Science, 2019, 40(9):259-266.
[29] LV X, DONG Q, ZUO Z, et al. Microplastics in a municipal wastewater treatment plant: fate, dynamic distribution, removal efficiencies, and control strate-gies[J]. Journal of Cleaner Production, 2019, 225:579-586.
doi: 10.1016/j.jclepro.2019.03.321
[30] BLAIR R M, WALDRON S, GAUCHOTTE-LINDSAY C. Average daily flow of microplastics through a tertiary wastewater treatment plant over a ten-month period[J]. Water Research, 2019, 163:114909.
doi: 10.1016/j.watres.2019.114909
[31] MINTENIG S M, INT-VEEN I, LODER M G J, et al. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-fourier-transform infrared imaging[J]. Water Research, 2017, 108:365-372.
doi: 10.1016/j.watres.2016.11.015
[32] MASON S A G D, SUTTON R, ET AL. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent[J]. Environmental Pollution, 2016, 218:1045-1054.
doi: 10.1016/j.envpol.2016.08.056
[33] 陈瑀, 张宴, 苏良湖, 等. 南京城市污水处理厂中微塑料的赋存特征[J]. 中国环境科学, 2020, 40(9):3835-3841.
CHEN Yu, ZHANG Yan, SU Lianghu, et al. Occurrence characteristics of microplastics in Nanjing municipal sewage treatment plant[J]. China Environmental Science, 2020, 40(9):3835-3841.
[34] BOUCHER J, FRIOT D. Primary microplastics in the oceans: a global evaluation of sources[M]. Gland: IUCN, 2017:27.
[1] 张婷婷, 许可欣, 金梦甜, 葛世洁, 高国洪, 蔡一啸, 王华平. 纤维素基有机-无机纳米光催化复合材料制备及其水处理应用的研究进展[J]. 纺织学报, 2021, 42(07): 175-183.
[2] 陈俊良, 乌婧, 王华平, 杨建平. 水环境中纤维微塑料去除技术研究展望[J]. 纺织学报, 2021, 42(06): 18-25.
[3] 周大旺, 乌婧, 杨建平, 陈烨, 吉鹏, 王华平. 纤维微塑料的研究现状及其削减策略[J]. 纺织学报, 2021, 42(06): 8-17.
[4] 韩其洋, 吴雄英, 丁雪梅. 合成纤维纺织品家庭洗涤释放纤维微塑料研究进展[J]. 纺织学报, 2021, 42(06): 35-40.
[5] 蒋文雯, 莫慧琳, 樊婷玥, 赵紫瑶, 任煜, 王春霞, 张伟, 臧传锋. Ag6Si2O7/TiO2 复合光催化剂的制备及其对亚甲基蓝的降解性能[J]. 纺织学报, 2021, 42(04): 107-113.
[6] 管斌斌, 李庆, 陈灵辉, 徐宇婷, 樊增禄. 基于锆-有机骨架的印染废水中Cr(VI)的荧光检测[J]. 纺织学报, 2021, 42(02): 122-128.
[7] 李庆, 管斌斌, 王雅, 刘天卉, 张洛红, 樊增禄. 光敏剂敏化Cu-有机骨架对活性深蓝K-R的高效光催化降解[J]. 纺织学报, 2020, 41(10): 87-93.
[8] 赵芷芪, 李秋瑾, 孙月静, 巩继贤, 李政, 张健飞. 磁性氧化石墨烯/聚丙烯胺盐酸盐微胶囊在染料吸附中的应用[J]. 纺织学报, 2020, 41(07): 109-116.
[9] 陈冬芝, 杨晓刚, 陈艳霞, 刘琳, 陈彬, 崔科丛, 张勇. 亚麻废纱制备纤维素基絮凝材料及其混凝工业废水性能[J]. 纺织学报, 2020, 41(01): 88-95.
[10] 徐春霞, 降帅, 韩阜益, 徐芳, 刘丽芳. 纤维素纳米纤丝气凝胶制备及其对亚甲基蓝的吸附性能[J]. 纺织学报, 2019, 40(10): 20-25.
[11] 辛民岳, 郑强, 吴江丹, 梁列峰. 同轴静电纺多孔氧化锌薄膜制备及其光催化性能[J]. 纺织学报, 2019, 40(10): 42-47.
[12] 张兰河, 张明爽, 高伟围, 李正, 贾艳萍, 高敏, 凌良雄. 铝酸钴/蜂窝陶瓷催化剂的制备及其在印染废水处理中的应用[J]. 纺织学报, 2019, 40(03): 125-132.
[13] 周存 李叶燃 马悦 王闻宇 金欣 肖长发. 二氧化钛负载聚酯织物的制备及其光催化性能[J]. 纺织学报, 2018, 39(11): 91-95.
[14] 王建坤 郭晶 张昊 郑帼. 交联氨基淀粉对亚甲基蓝染料的吸附性能[J]. 纺织学报, 2018, 39(11): 103-110.
[15] 贾艳萍 姜成 郭泽辉 张兰河 张海丰. 印染废水深度处理及回用研究进展[J]. 纺织学报, 2017, 38(08): 172-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!