纺织学报 ›› 2024, Vol. 45 ›› Issue (02): 21-27.doi: 10.13475/j.fzxb.20231008801

• 纤维材料 • 上一篇    下一篇

氧化锌/儿茶酚甲醛树脂微球抗菌粘胶纤维的制备及其性能

史玉磊1,2, 曲连艺1,2, 刘江龙1,2, 徐英俊1,2()   

  1. 1.青岛大学 功能纺织品与先进材料研究院, 山东 青岛 266071
    2.青岛大学 纺织服装学院, 山东 青岛 266071
  • 收稿日期:2023-10-25 修回日期:2023-12-05 出版日期:2024-02-15 发布日期:2024-03-29
  • 通讯作者: 徐英俊(1991—),男,教授,博士。主要研究方向为功能纤维与纺织品的开发与应用。E-mail:yingjun.xu@qdu.edu.cn
  • 作者简介:史玉磊(1997—),男,硕士生。主要研究方向为抗菌纤维的开发与制备。
  • 基金资助:
    国家重点研发计划项目(2021YFB3801905);中国科协青年人才托举工程项目(2022QNRC001)

Fabrication and properties of antibacterial viscose fibers containing zinc oxide/catechol-derived resin microspheres

SHI Yulei1,2, QU Lianyi1,2, LIU Jianglong1,2, XU Yingjun1,2()   

  1. 1. Institute of Functional Textiles and Advanced Materials, Qingdao University, Qingdao, Shandong 266071, China
    2. College of Textiles and Clothing, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2023-10-25 Revised:2023-12-05 Published:2024-02-15 Online:2024-03-29

摘要:

为制备高效抗菌和力学性能优良的粘胶纤维,由一步水热反应制备氧化锌/儿茶酚甲醛树脂(ZnO/CFR)微球,将之以不同比例与粘胶纺丝液共混,通过湿法纺丝制得一系列抗菌粘胶纤维。借助扫描电子显微镜、透射电子显微镜、X射线光电子能谱仪、多重光散射仪等研究了ZnO/CFR微球的微观形貌、化学组成及其在粘胶纺丝液中的分散性和稳定性,分析了粘胶纤维的颜色、形态、抗菌性能及力学性能等。结果表明:ZnO/CFR微球形状规则,粒径为0.9~2.5 μm,微球内随机分布有若干纳米ZnO,可在粘胶纺丝液中分散均匀,长期保持稳定,纺丝过程中无明显损失;所得抗菌粘胶纤维呈棕黑色,锌含量达0.85~2.08 mg/g,对大肠杆菌和金黄色葡萄球菌具有高效的非溶出型广谱抗菌作用,抑菌率达99.9%以上,且力学性能保持优良。

关键词: 氧化锌, 抗菌性能, 粘胶纤维, 儿茶酚, 微球, 水热反应

Abstract:

Objective Viscose fibers are highly regarded for their wearing comfort, making them popularly utilized in many fields. Equally, they can provide favorable conditions for microbial growth, thereby posing a risk to both material performance and human health. ZnO nanoparticles exhibit advantages in broad-spectrum antibacterial activity and low toxicity to the human patient, and thus have been considered one of the most promising candidates.

Method Using catechol, ZnCl2, and formaldehyde as precursors, ZnO nanoparticles/catechol-formaldehyde resins microspheres (denoted as ZnO/CFR) were synthesized via a one-pot hydrothermal method. ZnO/CFR were then used as additives to fabricate antimicrobial viscose fibers through wet-spinning technologies. Micro morphologies and chemical structures of ZnO/CFR were investigated. Dispersibility and stability of ZnO/CFR in the spinning solution were monitored. Antibacterial properties against E. coli and S. aureus of the fiber were evaluated by the zone of inhibition test and shake-flask methods. Zinc contents with the fibers were determined. Color and mechanical performance of the fibers were also investigated.

Results ZnO/CFR exhibited a smooth surface with a particle size of 0.9-2.5 μm, while some ZnO nanoparticles was irregularly distributed within the microsphere. Zn2p signals appeared in the XPS full spectrum of ZnO/CFR with an atomic content of 1.4%, which was composed of two strong peaks of Zn3p1/2 and Zn2p3/2 with the binding energy of 1 044.8 and 1 021.6 eV. ZnO/CFR were evenly dispersed in viscose spinning solutions to achieve homogeneous dispersions. With 0.2, 0.4, and 0.6% additions of ZnO/CFR, all the spinning solutions (VF-2%, VF-4%, and VF-6%) showed constant ΔT values around 0 throughout 24 h at different heights. All the fibers (VF-2%, VF-4%, and VF-6%) showed a regular shape and uniform brown color, while the color of fibers gradually became darker with the increasing additions of ZnO/CFR. All the fibers showed smooth surfaces without any micro-scale particles, where ZnO/CFR were buried in the fibers rather than exposing on the surface. After the zone of inhibition test, no microbial colony was found to grow in the area in contact with the fiber, while no inhibition zone appeared around the edge of the sample. All the agar plates corresponding to unmodified viscose fibers had some microbial growth, while those corresponding to VF-2%, VF-4%, and VF-6% showed fewer microbial colonies. VF-6%, with 2.08% of zinc in the fiber, achieved a high antibacterial rate of 99.9% against both E. coli and S. aureus. The L* value of VF-2%, VF-4%, and VF-6% decreased to 56.3, 49.2, and 39.2 from 91.3 of the control sample while the K/S value increased to 3.9, 5.1, and 10.7 from 0.7 of the reference fiber. VF-2%, VF-4%, and VF-6% each showed a slight decrease in breaking tenacity to 11.8, 11.6, and 11.4 cN/tex from 12.8 cN/tex of the unmodified fiber. VF-2%, VF-4%, and VF-6% respectively had a breaking elongation rate of 17.8%, 17.3%, and 17.1% while that of VF was 19.9%.

Conclusion ZnO/CFR prepared were monodisperse microspheres with some ZnO nanoparticles within the microsphere. ZnO/CFR microspheres were uniformly dispersed in the viscose spinning solution and showed long-term stability without any sedimentation of the particles. VF-2%, VF-4%, and VF-6% all showed smooth surfaces where most of ZnO/CFR were buried in the fiber. ZnO/CFR modified fibers exhibited the non-dissolution antibacterial behaviors. With 0.6% additions of ZnO/CFR, VF-6% presented a high antibacterial rate of 99.9% against both E. coli and S. aureus. ZnO/CFR blackened viscose fibers while slightly influencing the mechanical performance of the fiber. This work widens the window of ZnO nanoparticles for the production of antibacterial viscose fibers through wet spinning methods and presents a versatile approach for preparing antibacterial cellulosic materials such as films, foams, and hydrogels.

Key words: zinc oxide, antibacterial property, viscose fiber, catechol, microsphere, hydrothermal reaction

中图分类号: 

  • TS102.6

图1

ZnO/CFR微球的SEM、TEM照片及XPS全谱图和Zn2p高分辨谱图"

图2

不同粘胶纺丝液的数码和光学显微照片及ΔBS与扫描时间和样品高度关系曲线"

图3

不同粘胶纤维的数码照片及表面和截面SEM照片"

图4

不同粘胶纤维抗菌性能测试结果"

图5

不同粘胶纤维的颜色和拉伸性能"

[1] 姚萍, 江文, 王江, 等. 接枝壳寡糖抗菌粘胶纤维的制备及其抗菌性与染色效果[J]. 纺织学报, 2018, 39(4): 9-13.
YAO Ping, JIANG Wen, WANG Jiang, et al. Preparation and antibacterial and dyeing properties of chitosan grafted antibacterial viscose fiber[J]. Journal of Textile Research, 2018, 39(4): 9-13.
[2] KANTOUCH A, ELSAYED A A, SALAMA M, et al. Salicylic acid and some of its derivatives as antibacterial agents for viscose fabric[J]. International Journal of Biological Macromolecules, 2013, 62: 603-607.
doi: 10.1016/j.ijbiomac.2013.09.021 pmid: 24076193
[3] 中国化学纤维工业学会. 关注2022年中国化纤行业运行分析与2023年展望[E/OL]. 2023-03-15. https://www.cofa.com.cn/19/202303/3481.html.
China Chemical Fibers Association. Operation analysis of China's chemical fiber industry in 2022 and outlook in 2023[E/OL]. 2023-03-15. https://www.ccfa.com.cn/19/202303/3481.html.
[4] ZHENG J, SONG F, WANG X L, et al. In-situ synthesis, characterization and antimicrobial activity of viscose fiber loaded with silver nanoparticles[J]. Cellulose, 2014, 21(4): 3097-3105.
doi: 10.1007/s10570-014-0324-1
[5] 陈欢欢, 陈凯凯, 杨慕容, 等. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(2): 34-43.
CHEN Huanhuan, CHEN Kaikai, YANG Murong, et al. Preparation and properties of polylactic acid/thymol antibacterial fibers[J]. Journal of Textile Research, 2023, 44(2): 34-43.
[6] 曲连艺, 刘江龙, 徐英俊, 等. 仿贻贝型耐久抗菌织物的制备及其性能[J]. 纺织学报, 2023, 44(2): 176-182.
QU Lianyi, LIU Jianglong, XU Yingjun, et al. Preparation and properties of mussel-inspired durable antimicrobial fabrics[J]. Journal of Textile Research, 2023, 44(2): 176-182.
[7] NAWAB R, IQBAL A, NIAZI F, et al. Review featuring the use of inorganic nano-structured material for anti-microbial properties in textile[J]. Polymer Bulletin, 2022, 80(7): 7221-7245.
doi: 10.1007/s00289-022-04418-5
[8] ALAVI M, LI L, NOKHODCHI A. Metal, metal oxide and polymeric nanoformulations for the inhibition of bacterial quorum sensing[J]. Drug Discovery Today, 2023, 28(1): 103392-103402.
doi: 10.1016/j.drudis.2022.103392
[9] HUANG T, LI X, MAIER M, et al. Using inorganic nanoparticles to fight fungal infections in the antimicrobial resistant era[J]. Acta Biomaterialia, 2023, 158: 56-79.
doi: 10.1016/j.actbio.2023.01.019
[10] PASQUET J, CHEVALIER Y, PELLETIER J, et al. The contribution of zinc ions to the antimicrobial activity of zinc oxide[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457: 263-274.
doi: 10.1016/j.colsurfa.2014.05.057
[11] LI M, ZHU L, LIN D. Toxicity of ZnO nanoparticles to escherichia coli: mechanism and the influence of medium components[J]. Environmental Science & Technology, 2011, 45(5): 1977-1983.
doi: 10.1021/es102624t
[12] LAKSHMI PRASANNA V, VIJAYARAGHAVAN R. Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark[J]. Langmuir, 2015, 31(33): 9155-9162.
doi: 10.1021/acs.langmuir.5b02266 pmid: 26222950
[13] RAGHUPATHI K R, KOODALI R T, MANNA A C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles[J]. Langmuir, 2011, 27(7): 4020-4028.
doi: 10.1021/la104825u pmid: 21401066
[14] SIRELKHATIM A, MAHMUD S, SEENI A, et al. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism[J]. Nano-Micro Letters, 2015, 7(3): 219-242.
doi: 10.1007/s40820-015-0040-x pmid: 30464967
[15] GHOSH CHAUDHURI R, PARIA S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications[J]. Chemical Reviews, 2012, 112(4): 2373-2433.
doi: 10.1021/cr100449n pmid: 22204603
[16] LIU Y, ZHOU H, WANG J, et al. Core-shell Fe3O4@catechol-formaldehyde trapped satellite-like silver nanoparticles toward catalytic reduction in cationic and anionic dyes[J]. Vacuum, 2022, 202: 111204-111214.
doi: 10.1016/j.vacuum.2022.111204
[17] WANG T, OKEJIRI F, QIAO Z A, et al. Tailoring polymer colloids derived porous carbon spheres based on specific chemical reactions[J]. Advanced Materials, 2020, 32(44): 2002475-2002495.
doi: 10.1002/adma.v32.44
[18] LIU J, WICKRAMARATNE N P, QIAO S Z, et al. Molecular-based design and emerging applications of nanoporous carbon spheres[J]. Nature Materials, 2015, 14(8): 763-774.
doi: 10.1038/nmat4317 pmid: 26201892
[19] 吴娇, 于湖生, 万兴云, 等. 抗菌防螨防霉功能改性粘胶纤维的制备及其性能[J]. 纺织学报, 2019, 40(7): 19-23.
WU Jiao, YU Husheng, WAN Xingyun, et al. Preparation and properties of anti-bacterial, anti-mite and anti-mildew functional modified viscose fibers[J]. Journal of Textile Research, 2019, 40(7): 19-23.
[20] WEI J, WANG G, CHEN F, et al. Sol-gel synthesis of metal-phenolic coordination spheres and their derived carbon composites[J]. Angewandte Chemie International Edition, 2018, 57(31): 9838-9843.
doi: 10.1002/anie.v57.31
[21] LI X, ZHANG K, SHI R, et al. Enhanced flame-retardant properties of cellulose fibers by incorporation of acid-resistant magnesium-oxide microcapsules[J]. Carbohydrate Polymers, 2017, 176: 246-256.
doi: S0144-8617(17)30971-2 pmid: 28927605
[22] YANG Y, JI H, DUAN H, et al. Controllable synthesis of mussel-inspired catechol-formaldehyde resin microspheres and their silver-based nanohybrids for catalytic and antibacterial applications[J]. Polymer Chemistry, 2019, 10(33): 4537-4550.
doi: 10.1039/C9PY00846B
[23] WANG G, QIN J, ZHOU X, et al. Self-template synthesis of mesoporous metal oxide spheres with metal-mediated Inner architectures and superior sensing performance[J]. Advanced Functional Materials, 2018, 28(51): 1806144-1806151.
doi: 10.1002/adfm.v28.51
[24] YUEN A K, HUTTON G A, MASTERS A F, et al. The interplay of catechol ligands with nanoparticulate iron oxides[J]. Dalton Transactions, 2012, 41(9): 2545-2559.
doi: 10.1039/c2dt11864e
[25] GENG H, ZHONG Q Z, LI J, et al. Metal ion-directed functional metal-phenolic materials[J]. Chemical Reviews, 2022, 122(13): 11432-11473.
doi: 10.1021/acs.chemrev.1c01042
[26] PILATO L. Phenolic resins: 100 years and still going strong[J]. Reactive and Functional Polymers, 2013, 73(2): 270-277.
doi: 10.1016/j.reactfunctpolym.2012.07.008
[27] HIRANO K, ASAMI M. Phenolic resins: 100 years of progress and their future[J]. Reactive and Functional Polymers, 2013, 73(2): 256-269.
doi: 10.1016/j.reactfunctpolym.2012.07.003
[28] GAWLINSKA-NECEK K, WLAZLO M, SOCHA R, et al. Influence of conditioning temperature on defects in the double Al2O3/ZnO layer deposited by the ALD method[J]. Materials, 2021, 14(4): 1038-1048.
doi: 10.3390/ma14041038
[29] AL-GAASHANI R, RADIMAN S, DAUD A R, et al. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods[J]. Ceramics International, 2013, 39(3): 2283-2292.
doi: 10.1016/j.ceramint.2012.08.075
[30] SONG Y, HE Y, CAO Z, et al. Fabrication of antireflective coatings on cotton surface using dye-loaded nanoparticles for eco-friendly textile inkjet printing[J]. Progress in Organic Coatings, 2023, 182: 107607-107616.
doi: 10.1016/j.porgcoat.2023.107607
[31] WANG M, YI N, FANG K, et al. Deep colorful antibacterial wool fabrics by high-efficiency pad dyeing with insoluble curcumin[J]. Chemical Engineering Journal, 2023, 452: 139121-139128.
doi: 10.1016/j.cej.2022.139121
[32] 马君志, 王冬, 付少海. 氧化石墨烯协同二硫代焦磷酸酯阻燃粘胶纤维的制备及其性能[J]. 纺织学报, 2020, 41(3): 15-19.
MA Junzhi, WANG Dong, FU Shaohai. Preparation and properties of flame-retardant viscose fiber/dithiopyrophosphate incorporated with graphene oxide[J]. Journal of Textile Research, 2020, 41(3): 15-19.
[33] JIANG S, LI Q, WANG F, et al. Highly effective and sustainable antibacterial membranes synthesized using biodegradable polymers[J]. Chemosphere, 2022, 291(3): 133106-133115.
doi: 10.1016/j.chemosphere.2021.133106
[34] TIJING L D, RUELO M T G, AMARJARGAL A, et al. Antibacterial and superhydrophilic electrospun polyurethane nanocomposite fibers containing tourmaline nanoparticles[J]. Chemical Engineering Journal, 2012, 197: 41-48.
doi: 10.1016/j.cej.2012.05.005
[35] ZHANG Y, ZHOU Q, XIA W, et al. Sonochemical mordanting as a green and effective approach in enhancing cotton bio natural dye affinity through soy surface modification[J]. Journal of Cleaner Production, 2022, 336: 130465-130472.
doi: 10.1016/j.jclepro.2022.130465
[36] AMESIMEKU J, FAN L, JAKPA W, et al. Dyeing properties of meta-aramid fabric dyed with basic dye using ultrasonic-microwave irradiation[J]. Journal of Cleaner Production, 2021, 285: 124844-124852.
doi: 10.1016/j.jclepro.2020.124844
[1] 杨智超, 刘淑强, 吴改红, 贾潞, 张曼, 李甫, 李慧敏. 可吸收手术缝合线研究进展[J]. 纺织学报, 2024, 45(01): 230-239.
[2] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[3] 娄辉清, 上媛媛, 曹先仲, 徐蓓蕾. 碳氮化钛/粘胶纤维束集合体太阳能界面水蒸发器的制备及其性能[J]. 纺织学报, 2023, 44(10): 9-15.
[4] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[5] 柳浩, 马万彬, 栾一鸣, 周岚, 邵建中, 刘国金. 光子晶体结构生色碳纤维/涤纶混纺纱线的制备及其性能[J]. 纺织学报, 2023, 44(02): 159-167.
[6] 肖明, 黄亮, 罗龙永, 毕曙光, 冉建华. 羧基化聚苯乙烯荧光微球的合成及其在织物防伪中的应用[J]. 纺织学报, 2023, 44(02): 184-190.
[7] 彭阳阳, 盛楠, 孙丰鑫. 纤维基湿敏柔性驱动器的跨尺度构建及其性能[J]. 纺织学报, 2023, 44(02): 90-95.
[8] 曲连艺, 刘江龙, 徐英俊, 王玉忠. 仿贻贝型耐久抗菌织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 176-183.
[9] 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8.
[10] 张典典, 于梦楠, 李敏, 刘明明, 付少海. 基于聚合物微球接枝硅油的超滑棉织物制备及其防污性能[J]. 纺织学报, 2022, 43(10): 119-125.
[11] 杨春利, 周伟贤, 梁京龙, 林桂圳, 刘杰, 倪延朋, 刘云, 商胜龙, 朱平. 磁场诱导结构生色海藻酸钙纤维的快速制备及其性能[J]. 纺织学报, 2022, 43(09): 64-69.
[12] 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106.
[13] 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47.
[14] 李伟平, 杨桂霞, 程志强, 赵春莉. 聚乙烯吡咯烷酮/芦荟复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(08): 55-59.
[15] 熊永辉, 王冬, 杜长森, 付少海. 二硫代焦磷酸酯水性分散体系的制备及其在阻燃粘胶纤维中的应用[J]. 纺织学报, 2022, 43(07): 22-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!