纺织学报 ›› 2025, Vol. 46 ›› Issue (07): 136-143.doi: 10.13475/j.fzxb.20240401101

• 纺织工程 • 上一篇    下一篇

废旧棉织物破碎加工过程的建模与仿真

王子涵1, 李勇2, 陈晓川1(), 汪军3, 梁凌杰1   

  1. 1 东华大学 机械工程学院, 上海 201620
    2 塔里木大学 机械电气化工程学院, 新疆 阿拉尔 843300
    3 东华大学 纺织学院, 上海 201620
  • 收稿日期:2024-04-02 修回日期:2025-03-28 出版日期:2025-07-15 发布日期:2025-08-14
  • 通讯作者: 陈晓川(1970—),男,教授,博士。主要研究方向为棉花加工的建模仿真等。E-mail:xcchen@dhu.edu.cn
  • 作者简介:王子涵(2001—),男,硕士生。主要研究方向为织物的建模与仿真。

Modeling and simulation of waste cotton fabric shredding process

WANG Zihan1, LI Yong2, CHEN Xiaochuan1(), WANG Jun3, LIANG Lingjie1   

  1. 1 College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    2 College of Mechanical and Electronic Engineering, Tarim University, Alar, Xinjiang 843300, China
    3 College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2024-04-02 Revised:2025-03-28 Published:2025-07-15 Online:2025-08-14

摘要:

为研究机械法回收废旧纺织品过程中纤维的受力变化情况,以提高回收效率,在已有的机织物宏观模型的基础上,建立了由纤维集合体组成的细观模型。模型中增加了捻度参数,并考虑了捻度对弹性模量的影响。利用Abaqus对宏观模型和细观模型进行破碎加工过程的仿真,设计了相关实验来验证模型的有效性。同时仿真了锯齿在不同转速以及不同捻度下的受力情况。结果表明:锯齿转速不宜过大也不宜过小,过大会导致多余功率的浪费,过小不足以实现完全破碎棉织物,在本文模型中,转速至少大于或等于573 r/min(60 rad/s)。当捻度在60~80 捻/(10 cm)之间,随着捻度的减小,锯齿受力的最大值也减小。最后,分析了细观模型的优点,细化了宏观模型的结构,可以描述捻度的变化情况,且没有产生尺寸过小的网格以及复杂的接触,减小了仿真的时间成本。

关键词: 机械法回收, 废旧棉织物, 棉织物细观模型, 破碎加工过程仿真, 捻度

Abstract:

Objective In order to study the force change of fibers in the process of mechanical recycling of waste textiles and to improve the recycling efficiency, a mesoscopic model composed of fiber assemblies is established on the basis of the existing macroscopic model of woven fabrics. The twist parameter is added to this mesoscopic model and the influence of twist on elastic modulus is considered.

Method Abaqus was adopted to simulate the shredding process of the macroscopic model and the mesoscopic model, and a relevant experiment was designed to validate the accuracy of the models. The force of the sawtooth shredder at different rotational speeds and yarns with different twists were taken into consideration.

Results From the simulation results of the two models, it was observed that as the rotational speed of the sawtooth shredder decreased, the force exerted by the sawtooth shredder became smaller. It was found that the shredder force provided at a speed of 40 rad/s, and the cotton fabric was not be ripped up due to the low speed, indicating that that a suitably high speed should be selected in practical production. From the above finite element analysis, it was learnt that the force characteristics of the two models are basically the same, but the force values of the mesoscopic model are lower than those of the macroscopic model, which may be due to the fact that the material parameters of the yarn and fiber assembly are not fully mapped in the mesoscopic mode. In order to map the characteristic of yarn twist in the macroscopic model, the levels of yarn twist in the mesoscopic model were taken into consideration to study the influence of twist variation on the shredding process, of which twist levels of 60, 70 and 80 twist/(10 cm) were considered in the analysis. The results demonstrated that the change in twist affected the elastic modulus of yarns in the mesoscopic model. From the simulation analysis results, it was seen that the force on the sawtooth shredder of the mesoscopic model is the smallest when the yarn twist was assumed to be 60 twist/(10 cm). The relationship between the yarn twist level and the maximum force offered by the sawtooth shredder exhibited positive correlation.

Conclusion The mesoscopic model composed of fiber assemblies was established on the basis of the macroscopic model. Combined with Abaqus software, the finite element simulation of the shredding process of waste cotton cloth was carried out for two models. By simulating the influences of different sawtooth shedder speeds on the shredding process, it was learnt that the speed should not be lower than 573 r/min (60 rad/s) so as to provide the lowest shredding force. Between 60 twist/(10 cm) and 80 twist/(10 cm), the maximum force on the sawtooth shredder decreases as the twist decreases. The macroscopic model was found difficult to represent the force characteristics of the fibers and the way they move, and the mesoscopic model was established to refine the structure of the macroscopic model and can describe the variation of twist. Suitable mesh sizes and simple contacts between yarns were adopted to reduce the computational cost of the simulation.

Key words: mechanical recycling, waste cotton fabric, cotton fbric mesoscopic model, shredding process simulation, twist

中图分类号: 

  • TS101

图1

纬向的1个单元"

图2

纬纱所在的坐标系"

图3

棉织物的宏观模型"

图4

细观模型的截面图"

图5

棉织物的细观模型"

表1

经纬纱拉伸性能参数"

纱线类型 强力/cN 伸长量/mm 伸长率/%
经纱 235.4 8.75 3.5
纬纱 200.2 10.50 4.2

图6

经纬纱的应力-应变曲线"

表2

宏观模型和细观模型的弹性模量"

模型 类型 弹性模量/MPa
宏观模型 经纱 3 200.0
纬纱 3 100.0
细观模型 经纱对应的纤维集合体 3 602.6
纬纱对应的纤维结集合体 3 490.0

图7

破碎加工过程的有限元模型"

图8

实验机制"

图9

仿真结果"

图10

纤维集合体截面处受力随时间的变化"

表3

断裂截面实验值与仿真值以及相对误差"

类别 断裂截面应力/N 相对
误差/%
实验值 仿真值
宏观模型 0.245 0.250 2.0
细观模型 0.245 0.255 4.0

表4

不同滚筒转速下锯齿的最大受力"

类别 不同转速下的最大受力
382 r/min 573 r/min 764 r/min 954 r/min
宏观模型 0.893 0.954 1.284 1.315
细观模型 0.476 0.660 0.881 1.104

图11

不同转速工况下的宏观模型应力云图"

[1] 中国纺织工业联合会. 全国人大代表、新乡化纤董事长邵长金: 推动纺织行业绿色发展与高性能纤维出口[EB/OL].(2025-03-07)[2025-04-07]. https://www.cntac.org.cn/zixun/huiyuan/202503/t20250307_4378160.html.
China National Textile and Apparel Council. SHAO Changjin, National People's Congress Deputy and Chairman of Xinxiang Chemical Fiber Co., Ltd: Promoting Green Development and High-performance Fiber Export in the Textile Industry[EB/OL]. (2025-03-07)[2025-04-07]. https://www.cntac.org.cn/zixun/huiyuan/202503/t20250307_4378160.html.
[2] 肖俊江, 丁坤, 罗智红, 等. 废旧纺织品回收再利用研究进展[J]. 纺织导报, 2021(7):64-68.
XIAO Junjiang, DING Kun, LUO Zhihong, et al. Research progress in recycling and reuse of waste textiles[J]. China Textile Leader, 2021(7):64-68.
[3] 刘声珏, 王欣, 夏伊静, 等. 废旧棉织物的资源能源化利用研究进展[J]. 浙江化工, 2024, 55(3):39-47.
LIU Shengjue, WANG Xin, XIA Yijing, et al. Research progress on resource and energy utilization of waste cotton fabrics[J]. Zhejiang Chemical Industry, 2024, 55(3):39-47.
[4] WANG Youqi, SUN Xuekun. Digital-element simulation of textile processes[J]. Composites Science and Technology, 2001, 61(2): 311-319.
[5] 马莹, 何田田, 陈翔, 等. 基于数字单元法的三维正交织物微观几何结构建模[J]. 纺织学报, 2020, 41(7):59-66.
MA Ying, HE Tiantian, CHEN Xiang, et al. Micro-geometry modeling of three-dimensional orthogonal woven fabrics based on digital element approach[J]. Journal of Textile Research, 2020, 41(7):59-66.
[6] MEIER C, GRILL M J, WALL W A, et al. Geometrically exact beam elements and smooth contact schemes for the modeling of fiber-based materials and structures[J]. International Journal of Solids and Structures, 2018, 154: 124-146.
[7] JÚNIOR F J C, NANDURDIKAR V, NETO G A, et al. Concurrent multiscale modelling of woven fabrics: using beam finite elements with contact at mesoscale[J]. Finite Elements in Analysis & Design, 2024, 242:104274.
[8] DAELEMANS L, FAES J, ALLAOUI S, et al. Finite element simulation of the woven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method[J]. Composites Science and Technology, 2016, 137: 177-187.
[9] DAELEMANS L, BRECHT T, BARIS C, et al. Kinematic and mechanical response of dry woven fabrics in through-thickness compression: virtual fiber modeling with mesh overlay technique and experimental valid-ation[J]. Composites Science and Technology, 2021, 207:108706.
[10] XIE J, CHEN X, ZHANG Y, et al. Experimental and numerical investigation of the needling process for quartz fibers[J]. Composites Science and Technology, 2018, 165: 115-123.
[11] YING Z, HU X, CHENG X, et al. Numerical investigation on the effect of tow tension on the geometry of three-dimensional orthogonally woven fabric[J]. Textile Research Journal, 2019, 89(18): 3779-3791.
[12] 孙银银, 郑天勇. 纱线3D建模研究进展[J]. 中原工学院学报, 2010, 21(1):51-55.
SUN Yinyin, ZHENG Tianyong. Research progress of modelling 3D yarn[J]. Journal of Zhongyuan University of Technology, 2010, 21(1):51-55.
[13] 姚穆. 纺织材料学[M]. 北京: 中国纺织出版社, 2015:25-35.
YAO Mu. Textile materials[M]. Beijing: China Textile & Apparel Press, 2015:25-35.
[14] 秦芳, 顾平. 织物结构的多项式数学模型与三维模拟[J]. 丝绸, 2008(2):32-35.
QIN Fang, GU Ping. Polynomial model and 3D-simulationg of fabric structure[J]. Journal of Silk, 2008(2):32-35.
[15] 尚静雨, 蒋高明, 李炳贤. 简单大提花织物的三维仿真[J]. 毛纺科技, 2024, 52(4):11-17.
SHANG Jingyu, JIANG Gaoming, LI Bingxian. 3D simulation of woven simple jacquard fabrics[J]. Wool Textile Journal, 2024, 52(4):11-17.
[16] 黄伟, 汪军. 双股线几何强力模型的建立及其影响因素[J]. 纺织学报, 2015, 36(2):25-29,34.
HUANG Wei, WANG Jun. Establishment of a two-ply yarn's geometric and strength model and its influences on mechanical properties[J]. Journal of Textile Research, 2015, 36(2):25-29,34.
[17] 何丽云. 废旧纺织品开松前上油预处理工艺研究[D]. 北京: 北京服装学院, 2014:41-43.
HE Liyun. Oiling preteatment for waste textiles before opening[D]. Beijing: Beijing Institute of Fashion Technology, 2014:41-43.
[1] 江文杰, 郭明瑞, 高卫东. 环锭纺棉/涤短纤皮芯纱的皮芯层捻度分布[J]. 纺织学报, 2024, 45(12): 58-66.
[2] 赵攀, 谭文丽, 赵心蕊, 付金凡, 刘成显, 袁久刚. 基于离子液体微溶焊接的可降解薄膜制备及其性能[J]. 纺织学报, 2024, 45(08): 89-98.
[3] 骆春旭, 龚浩然, 吴敏勇, 黄丛, 刘可帅. 特种玄武岩缝纫线的制备工艺及其性能[J]. 纺织学报, 2023, 44(11): 61-66.
[4] 李久刚, 金鑫鹏, 邓文韬, 秦雪, 张贺, 黄丛, 刘可帅. 氧化铝纱线的合股数与捻度对其强度的影响[J]. 纺织学报, 2023, 44(10): 48-52.
[5] 王伟, 吴嘉欣, 张晓云, 张传杰, 宫兆庆. 制浆用废旧棉织物的脱色性能及其机制[J]. 纺织学报, 2023, 44(07): 175-183.
[6] 敖利民, 唐雯. 捻度和捻向配置对双包包覆纱性能的影响[J]. 纺织学报, 2023, 44(07): 50-56.
[7] 李龙, 吴磊, 林思伶. 捻度对棉/氨纶/银丝包芯纱性能的影响[J]. 纺织学报, 2023, 44(01): 100-105.
[8] 于学智, 张明光, 曹继鹏, 张月, 王晓燕. 捻度对锦纶/棉混纺纱质量指标的影响[J]. 纺织学报, 2023, 44(01): 106-111.
[9] 敖利民, 苏娟, 唐雯. 空心锭包覆纺纱包缠捻度及其分布的影响因素分析[J]. 纺织学报, 2022, 43(12): 54-61.
[10] 李浩, 邢明杰, 孙志豪, 吴瑶. 基于图像的喷气涡流纺纱线捻度测试方法探讨[J]. 纺织学报, 2021, 42(02): 60-64.
[11] 敖利民, 唐雯, 王爱林. 亚麻/有色涤纶长丝包缠复合纱的外观与性能[J]. 纺织学报, 2019, 40(08): 40-47.
[12] 张敏 王鸿博 高卫东 卢雨正 . 喷气织机车速对织物纬向物理力学性能的影响[J]. 纺织学报, 2016, 37(08): 41-46.
[13] 钟智丽 王玉新. 聚丙烯长丝/芳纶包缠纱捻度的优化[J]. 纺织学报, 2014, 35(6): 40-0.
[14] 徐海燕. 捻度对超高分子质量聚乙烯纱线可编织性的影响[J]. 纺织学报, 2013, 34(11): 44-0.
[15] 崔红, 肖志永, 郁崇文. 自捻纱的捻度分布特征分析[J]. 纺织学报, 2012, 33(8): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!