纺织学报 ›› 2025, Vol. 46 ›› Issue (04): 179-186.doi: 10.13475/j.fzxb.20240701801

• 服装工程 • 上一篇    下一篇

智能矫姿服装设计

王军1,2(), 殷晓玉1, 周晓琪1, 王思远1   

  1. 1.大连工业大学 服装学院, 辽宁 大连 116034
    2.大连工业大学 服装设计与工程国家级实验教学示范中心, 辽宁 大连 116034
  • 收稿日期:2024-07-18 修回日期:2025-01-17 出版日期:2025-04-15 发布日期:2025-06-11
  • 作者简介:王军(1978—),女,教授,博士。主要研究方向为服装数字化与先进制造技术。E-mail:wangjundl@126.com
  • 基金资助:
    教育部人文社会科学研究青年基金项目(17YJC60096);辽宁省教育厅科研项目(J202002);辽宁省教育厅科研项目(J2020030);辽宁省教育厅科研项目(LJKZZ20220068)

Design of smart garment for posture correction

WANG Jun1,2(), YIN Xiaoyu1, ZHOU Xiaoqi1, WANG Siyuan1   

  1. 1. School of Fashion, Dalian Polytechnic University, Dalian, Liaoning 116034, China
    2. National Demonstration Center for Experimental Fashion Design and Engineering Education, Dalian Polytechnic University, Dalian, Liaoning 116034, China
  • Received:2024-07-18 Revised:2025-01-17 Published:2025-04-15 Online:2025-06-11

摘要:

针对久坐智能矫姿可穿戴设备普遍存在的监测精度低、姿态判断标准不明确、缺少坐姿动态监测识别等问题,以青年女性为对象,开展动态坐姿评价方法研究,并设计开发智能矫姿服装。选取髋部角度、上半身倾斜角、后背上角、后背下角4个坐姿特征角度,利用摄影法采集动态坐姿影像,分析动态坐姿变化规律并提取坐姿特征角度值,共得到649组实验数据,综合人体坐姿动态变化规律与静态坐姿判别标准,提出了动态坐姿监测识别方法。基于此方法设计以MPU6050加速度传感器为核心元件的智能矫姿服装,经功能测试与舒适性评价,该智能服装的识别精确率为97.33%,正确率为95%。本文为久坐动态坐姿识别与评估方法研究提供了理论参考,同时为智能矫姿服装和可穿戴设备的产品化开发与生产提供参考。

关键词: 坐姿识别, 加速度传感器, 智能服装, 坐姿特征角, 模块化设计

Abstract:

Objective Prolonged sitting and poor posture are common for people at modern times, causing shoulder and back pain, spinal deformities, muscle strain, and other health issues. Accelerometers are widely used in posture correction wearables due to their portability and accuracy. However, current devices have limitations, including narrow monitoring range, low scientific rigor in evaluation methods, and poor comfort. These issues reduce their effectiveness in dynamic posture correction. Developing better evaluation methods and more efficient smart posture correction clothing is important.

Methods This study was focused on improving posture recognition methods. Young women were selected as the research subjects. Dynamic posture variation patterns were analyzed. A recognition and correction method was proposed leading to the development of smart posture correction garment. Upper body posture data were collected using photography. Trunk inclination, hip joint angle, upper back angle, and lower back angle were chosen as variables. Static data analysis divided the samples into normal and slouched posture groups. Dynamic posture changes were observed and analyzed. A method to identify dynamic postures was developed. Postures were considered normal when the upper back angle was in the range from 12.6° to 20.8° and the lower back angle in the range from 7.6° to 14.6°. Abnormal postures lasting less than 8 s were excluded from slouched postures. The smart garment used MPU6050 accelerometers for dual-point monitoring. Core components included accelerometers, a STM32 board, and buzzers.

Results In the experiment designed to collect dynamically seated posture data, human posture data were collected using photography, with a 1 h continuous measurement cycle. A total of 18 monitoring cycles were collected, resulting in 164 self-adjustment cycles and 649 valid sample data sets. After judgment, 378 sets of normal posture feature angle data and 271 sets of slouched posture data were obtained. The experimental data were analyzed, and combined with previous research, a dynamic posture judgment method suitable for sedentary individuals was derived. The upper back angle threshold for normal posture was [12.6°, 20.8°], and the lower back angle threshold was [7.6°, 14.6°]. An accelerometer was used to monitor the dynamic angles of the posture. An intelligent posture correction garment was designed and manufactured, and testing showed that the posture recognition accuracy of the smart garment was 97.33%, with a correctness rate of 95%, indicating good recognition performance. Wearability evaluations indicated that the participants were generally satisfied, suggesting that the smart posture correction garment has practical value.

Conclusion This study takes young women as the research object. Through the study of dynamic sitting characteristics and the change rule of sitting posture, and the use of acceleration sensors to monitor and analyse the angle of the sitting characteristics, a more accurate range of activity of the dynamic sitting characteristics angle of young women was obtained, and a scientific method of sitting posture recognition was proposed. Combined with this recognition method, an efficient intelligent posture correction garment was developed, and the design and evaluation of the garment was completed. The above research provides a theoretical basis for the posture recognition and evaluation method, and provides an important reference for the commercialisation and promotion of smart posture correction garments and wearable devices. This research can help improve individuals' poor postural behaviour and increase the value of wearable technology in health management. In addition, the study of human posture characteristics is important for solving the back health problems of sedentary people, so the smart posture corrective clothing has a broad market prospect. Modularly designed smart posture corrective clothing must integrate accurate detection, wearing comfort, invisibility and flexibility to adapt to a wider range of users and practical application scenarios.

Key words: sitting posture recognition, accelerometer, smart garment, postural feature angle, modular design

中图分类号: 

  • TS941

表1

坐姿特征变量"

特征角 定义
上半身倾斜角 第七颈椎点和髋关节连线与铅垂线的夹角
髋部角度 第七颈椎点和髋关节连线与水平线的夹角
后背上角 肩胛凸点和后颈点连线与冠状面的夹角
后背下角 肩胛凸点和后腰凹点连线与冠状面的夹角

图1

坐姿与人体特征角示意图"

图2

Screen Protractor中坐姿特征角度示意"

图3

后背特征角正态性检验结果"

表2

描述性分析表"

研究
变量
坐姿
状态
统计
最小值/
(°)
最大值/
(°)
平均值/
(°)
标准差
后背
上角
正常 378 10.6 23.8 17.8 2.7
驼背 271 12.8 38.9 24.2 5.1
后背
下角
正常 378 6.5 19.9 10.8 2.4
驼背 271 -29.3 8.7 -10.4 9.8

图4

正常与驼背坐姿折线图"

图5

系统功能结构图"

表3

电子元件名称与功能"

电子元件名称 功能
STM32F103C8T6单片机 系统编译运算、数据存储
MPU6050加速度传感器 测量人体坐姿特征角度
蜂鸣器、扬声器 信号反馈与提醒
OLED显示屏 识别结果显示

图6

硬件实物图"

图7

服装款式与结构设计"

图8

样衣试穿效果"

表4

功能测试结果数据统计"

测试
编号
实际
坐姿
特征角/(°) 是否
提醒
识别
情况
后背上角 后背下角
1 正常 17.1 10.9 正确
驼背 29.1 -14.7 正确
正常 19.2 11.0 正确
2 正常 17.1 8.6 正确
驼背 30.2 -15.5 正确
正常 18.0 13.4 正确
3 正常 16.1 8.7 正确
驼背 20.4 8.3 错误
正常 16.4 13.2 正确
4 正常 16.3 9.1 正确
驼背 27.5 -17.3 正确
正常 14.7 13.7 正确
5 正常 20.6 11.3 正确
驼背 31.2 -15.4 正确
正常 16.8 11.2 正确
6 正常 18.7 8.2 正确
驼背 26.5 -17.9 正确
正常 14.9 9.6 正确
7 正常 20.6 10.6 正确
驼背 22.3 -11.9 正确
正常 20.1 11.1 正确
8 正常 17.4 14.4 正确
驼背 23.7 -17.7 正确
正常 28.8 16.3 正确
9 正常 29.1 19.4 正确
驼背 34.5 -16.4 正确
正常 14.9 13.2 正确
10 正常 20.6 14.6 正确
驼背 28.8 -16.3 正确
正常 21.7 7.4 错误

表5

综合评分表"

试穿者
编号
舒适度 合体性 透气性 噪声感 技术接受度 实用性
1 5 4 5 4 5 4
2 5 5 4 5 4 5
3 4 5 5 4 5 5
4 4 4 5 5 5 4
5 4 5 5 4 4 5
6 4 5 4 4 5 5
7 4 4 4 5 5 5
8 5 5 4 4 4 5
9 4 4 5 4 5 4
10 4 5 5 5 5 5
平均分 4.3 4.6 4.8 4.4 4.7 4.7
[1] 黄昀, 矫玮, 朱晓东, 等. 久坐腰痛人群核心肌力状态特征及康复研究[J]. 西安体育学院学报, 2020, 37(2):218-224.
HUANG Yun, JIAO Wei, ZHU Xiaodong, et al. Study on the state characteristics and rehabilitation of core muscle strength in sedentary of low back pain[J]. Journal of Xi'an Institute of Physical Education, 2020, 37(2):218-224.
[2] 高同辉, 卫朝霞. 康复锻炼用姿态监测智能T恤的研究[J]. 丝绸, 2015, 52(12):31-36.
GAO Tonghui, WEI Zhaoxia. Study on posture monitoring smart t-shirt for rehabilitation exercises[J]. Journal of Silk, 2015, 52(12):31-36.
[3] NELSON M E, REJESKI W J, BLAIR S N, et al. Physical activity and public health in older adults:recommendation from the american college of sports medicine and the american heart association[J]. Circulation, 2007, 116(9):1094-105.
[4] 李辉. 交通银行员工身体姿态评估与干预研究[D]. 北京: 北京体育大学,2015:20-22.
LI Hui. Bank staff error posture assessment and intervention[D]. Beijing: Beijing Sports University,2015:20-22.
[5] 侯煜杰, 刘欢欢, 王朝晖. 智能坐姿矫正服装研究现状与发展趋势[J]. 纺织学报, 2024, 45(8):250-258.
HOU Yujie, LIU Huanhuan, WANG Zhaohui. Research status and development trend of smart sitting posture correction garment[J]. Journal of Textile Research, 2024, 45(8):250-258.
[6] 陈黄飞, 张舒灵, 张涵, 等. 基于AMS AS7000动态心率智能穿戴项链的设计[J]. 信息技术与信息化, 2019(5):45-47.
CHEN Huangfei, ZHANG Shuling, ZHANG Han, et al. A design of intelligent wearing necklace based on AMS AS7000 dynamic heart rate official flagship shop[J]. Information Technology and Informatization, 2019(5):45-47.
[7] MITROFF S. Lumo lift review: a posture tracker that puts design over details[EB/OL]. [2024-07-18]. https://www.cnet.com/reviews/lumo-lift-review/.
[8] 中国江西网. 法国新型智能身姿矫正衣Percko上线美国Kickstarter当天筹款目标翻倍. [EB/OL]. [2024-7-14]. http://news.163.com/16/1114/18/C5RRL95K00014AEE.html.
JXCN. Percko, France's new smart posture correction clothing, doubles fundraising goal on the same day it goes online on U.S. kickstarter. [EB/OL]. [2024-7-14]. http://news.163.com/16/1114/18/C5RRL95K00014AEE.html.
[9] PATINO G A, KHOSHNAM M, MENON C. Wearable device to monitor back movements using an inductive textile sensor[J]. Sensors, 2020, 20(3):905-905.
[10] JIN S, KIM M, PARK J, et al. A comparison of biomechanical workload between smartphone and smartwatch while sitting and standing[J]. Applied Ergonomics, 2019. DOI:10.1016/j.apergo.2018.11.009.
[11] GUAN X, FAN G, CHEN Z, et al. Gender difference in mobile phone use and the impact of digital device exposure on neck posture.[J]. Ergonomics, 2016, 59(11):1453-1461.
pmid: 27046745
[12] 陈玲, 江红霞, 刘基宏. 基于可穿戴传感器的躯干参考点选取分析[J]. 丝绸, 2022, 59(4):52-58.
CHEN Ling, JIANG Hongxia, LIU Jihong. Analysis of trunk reference point selection based on wearable sensor[J]. Journal of Silk, 2022, 59(4): 52-58.
[13] Canadian Centre for Occupational Health and Safety Government of Canada. CCOHS: Working in a Sitting Position - Good Body Position[EB/OL].[2024-12-3]. https://www.ccohs.ca/oshanswers/ergonomics/sitting/sitting_position.html. .
[14] MCATAMNEY L, NIGEL CORLETT E. RULA: a survey method for the investigation of work-related upper limb disorders[J]. Applied Ergonomics, 1993, 24(2):91-99.
doi: 10.1016/0003-6870(93)90080-s pmid: 15676903
[15] 王晓霞, 戴建国, 王春霞, 等. 青年女性体表角度分析[J]. 纺织学报, 2013, 34 (7): 106-110.
WANG Xiaoxia, DAI Jianguo, WANG Chunxia, et al. Analyzing body shape of young women by use of body surface angles[J]. Journal of Textile Research, 2013, 34 (7): 106-110.
[16] 罗斯祺. 基于青年女性特殊体表形态的上衣结构优化与设计应用[D]. 武汉: 武汉纺织大学,2022:12-17.
LUO Siqi. Structural optimization and design application of jacket based on young women's special body shape[D]. Wuhan: Wuhan Textile University,2022:12-17.
[17] 严芳英, 何梦秋, 柯莹. 久坐人群坐姿调整背心的研制与性能评价[J]. 丝绸, 2023, 60 (6): 33-39.
YAN Fangying, HE Mengqiu, KE Ying. Development and performance evaluation of a sitting posture adjustment vest for the sedentary people[J]. Journal of Silk, 2023, 60(6): 33-39.
[18] 程曦, 徐伟. 基于人机工程学的美术教室桌椅设计分析[J]. 家具, 2025, 46(1):93-98.
CHENG Xi, XU Wei. Ergonomic analysis of art classroom desks and chairs design[J]. Furniture, 2025, 46(1):93-98.
[19] 盛俊龙. 北京市儿童青少年身体姿态现状及测试方法的研究[D]. 北京: 北京体育大学,2019:13-18.
SHENG Junlong. Study on the status quo and test methods of children and adolescents' body posture in Beijing[D]. Beijing: Beijing Sport University,2019:13-18.
[20] 刘岩. 小学生脊柱形态异常矫正运动处方的研制与效果评价[D]. 北京: 北京体育大学,2018:16-22.
LIU Yan. Development and evaluation of exercise prescriptions for correcting spinal morphology of pupils[D]. Beijing: Beijing Sport University,2018:16-22.
[21] SHIN H, KIM K. Effects of cervical flexion on the flexion-relaxation ratio during smartphoneUse[J]. Journal of Physical Therapy Science, 2014, 26(12):1899-1901.
[1] 严艺, 朱达辉. 老年智能服装研究现状与发展趋势[J]. 纺织学报, 2025, 46(04): 244-254.
[2] 侯煜杰, 刘欢欢, 王朝晖. 智能坐姿矫正服装研究现状与发展趋势[J]. 纺织学报, 2024, 45(08): 250-258.
[3] 王建萍, 朱妍西, 沈津竹, 张帆, 姚晓凤, 于卓灵. 软体机器人在服装领域的应用进展[J]. 纺织学报, 2024, 45(05): 239-247.
[4] 王馨雨, 田明伟. 具有距离监测与辅助提示功能的自闭症儿童智能服装设计[J]. 纺织学报, 2024, 45(03): 156-162.
[5] 王中昱, 苏云, 王云仪. 机器学习建立的个体热舒适模型及其在服装领域的应用展望[J]. 纺织学报, 2023, 44(05): 228-236.
[6] 王晨露, 马金星, 杨雅晴, 韩潇, 洪剑寒, 占海华, 杨施倩, 姚绍芳, 刘姜乔娜. 聚苯胺涂层经编织物的应变传感性能及其在呼吸监测中的应用[J]. 纺织学报, 2022, 43(08): 113-118.
[7] 黄锐, 肖爱民. 基于温湿度传感器的特护失禁内裤的研发[J]. 纺织学报, 2022, 43(07): 141-148.
[8] 林文君, 缪旭红. 光导纤维在发光织物上的应用研究进展[J]. 纺织学报, 2021, 42(07): 169-174.
[9] 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127.
[10] 王玉婷, 凌忠文, 杨欣, 刘宇清. 纳米氧化钨复合棉纤维的制备及其光致变色性能[J]. 纺织学报, 2021, 42(02): 21-26.
[11] 金鹏, 薛哲彬, 戈垚. 具有实时瓦斯监测功能的新型智能矿工服设计[J]. 纺织学报, 2020, 41(11): 143-149.
[12] 张佳慧, 王建萍. 圆形纬编针织物电极导电性能及电阻理论模型构建[J]. 纺织学报, 2020, 41(03): 56-61.
[13] 李柽安, 鲁虹. 腰部运动损伤防护智能服装的研发[J]. 纺织学报, 2020, 41(02): 119-124.
[14] 孙悦 范杰 王亮 刘雍. 可穿戴技术在纺织服装中的应用研究进展[J]. 纺织学报, 2018, 39(12): 131-138.
[15] 方东根 沈雷 胡哲. 智能服装材料及其在安全性服装中的应用[J]. 纺织学报, 2015, 36(12): 158-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!