纺织学报 ›› 2025, Vol. 46 ›› Issue (06): 143-150.doi: 10.13475/j.fzxb.20240706901

• 纺织工程 • 上一篇    下一篇

基于全息流程模型的纺织生产碳排放分析方法

高俊1, 鲍劲松1(), 张丹2   

  1. 1.东华大学 机械工程学院, 上海 201620
    2.香港理工大学 机械工程学院, 香港 999077
  • 收稿日期:2024-07-30 修回日期:2025-03-12 出版日期:2025-06-15 发布日期:2025-07-02
  • 通讯作者: 鲍劲松(1972—),男,教授,博士。主要研究方向为工业智能与智能制造。E-mail:bao@dhu.edu.cn
  • 作者简介:高俊(2000—),男,硕士生。主要研究方向为流程挖掘与工业智能。
  • 基金资助:
    国家重点研发计划项目(2019YFB1706300)

Textile manufacturing carbon emissions analysis method based on holographic process model

GAO Jun1, BAO Jinsong1(), ZHANG Dan2   

  1. 1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    2. Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
  • Received:2024-07-30 Revised:2025-03-12 Published:2025-06-15 Online:2025-07-02

摘要:

纺织生产环节的高能耗问题日益突出,目前对纺织生产的碳排放分析侧重于时间动态特性的分析,未能充分考虑到物料流转、能源消耗等关键信息的重要性。这些被忽视的信息潜在地包含了对于精准碳排放分析至关重要的数据,对于实现纺织生产的可持续性目标具有不可低估的价值。为解决上述问题,提出了一种基于对象为中心Petri网的全息流程模型,能够对纺织生产流程整体、各工序以及各影响因素进行多视角的碳排放分析,为制定优化策略提供支撑。首先,明确了纺织生产流程中的系统边界,并对其碳排放特征进行分析。其次,构建了基于对象为中心 Petri 网的全息流程模型,对纺织生产流程中3种不同场景进行模拟仿真,并利用全息流程模型实现了多种视角的碳排放分析。最后,以某纺织企业的涤纶/棉混纺织物生产数据验证了方法的可行性。结果表明,该方法能够对纺织生产流程从多视角进行碳排放分析,且采取针对性优化策略后,碳排放与之前相比下降20%左右。

关键词: 纺织生产, 碳排放, 全息流程模型, 可持续发展, 绿色制造, 工业智能

Abstract:

Objective Textile manufacturing is reported to be the most energy-intensive in the entire lifecycle, and is associated to high energy consumption. However, existing methods to carbon emissions analysis in textile manufacturing focus on temporal dynamics while not adequately addressing the importance of critical factors like material circulation and energy usage. Therefore, it is essential to fully utilize neglected information in order to conduct a multi-perspective carbon emissions analysis of textile manufacturing.

Method To enable accurate carbon emissions analysis, this paper proposed a carbon emissions analysis method based on a holographic process model (HPM). The system boundary in the textile manufacturing was defined as the first step, followed by an analysis of the characteristics related to carbon emissions. A HPM based on the objective/centric petri net (OCPN) was constructed to simulate three different in the textile manufacturing of polyester-cotton blended fabrics.The constructed HPM was utilized to achieve a multi-perspective analysis of carbon emissions, and the feasibility of the method was verified using the polyester/cotton fabric production data from a textile enterprise.

Results By extracting and processing textile manufacturing data, a thorough dataset for the HPM was compiled. Utilizing the OCPM mining tool, the HPM was constructed and used to simulate actual textile manufacturing. By using the established HPM, it was possible to carry out carbon emissions analysis from three perspectives, i.e., entire process, each procedure, and influencing factors. From the perspective of the entire process, product 2(a standard polyester/cotton blended fabric) showed the lowest average carbon footprint at 4.74 kg CO2e/kg, while product 3(a dark-colored polyester/cotton blended fabric) demonstrated the highest at 8.48 kg CO2e/kg, nearly double that of product 2. Product 1(a light-colored polyester/cotton blended fabric) showed an average carbon footprint of 7.58 kg CO2e/kg. From the perspective of each procedure, dyeing process was found to be the stage with the largest percentage of carbon emissions in the production of various fabrics. Carbon emissions from dyeing accounted for 50%-55% of the total energy consumption, with differences varying by product. From the perspective of influencing factors, the carbon emissions generated by the electricity consumed in fabric production showed the highest proportion, around 50%. After conducting an accurate carbon emissions analysis, a series of targeted clean production strategies were developed. Both product 1 and product 3 were fabrics in dark color, and the carbon emissions from the dyeing process accounted for a high proportion, nearly 55%. By implementing a single-step dyeing process for these two products, reducing the number of dyeing cycles, the carbon emissions were reduced by 20% while ensuring product quality. Compared to the traditional production process, the carbon emissions of product 1 decreased by 77 537.15 kg CO2e, and the carbon emissions of product 3 decreased by 62 724.42 kg CO2e. For product 2, a light-colored fabric, carbon emissions were decreased by streamlining unnecessary processes and reducing equipment downtime, which improved energy efficiency. The carbon emissions of product 2 decreased by 17 278.61 kg CO2e, representing a reduction rate of 10%.

Conclusion This paper proposed a carbon emission analysis method based on HPM. This method first defined the system boundary in the textile manufacturing and analyzed the characteristics of carbon emissions. Subsequently, HPM based on OCPN was constructed to simulate the textile manufacturing process. Furthermore, the constructed HPM has been utilized to achieve a multi-perspective analysis of carbon emissions. This method was applied to a textile enterprise, and the feasibility of the method was verified using production data of polyester/cotton fabrics from three different scenarios. The results show that HPM outperforms traditional process model based on petri net. And proposed method is conducive to an all-encompassing carbon emissions analysis in textile manufacturing, offering robust support for the eco-transition of textile enterprises. Future work will focus on expanding the application scope of the holographic process model to accommodate a wider variety of textile manufacturing processes.

Key words: textile manufacturing, carbon emission, holographic process model, sustainable development, green manufacturing, industrial intelligence

中图分类号: 

  • TP311.1

图1

纺织生产流程"

图2

纺织生产系统边界"

图3

基于全息流程模型的碳排放分析方法框架"

表1

全息流程模型的数据示例"

事件号 活动 物料 能源 产品 数据接口 时间戳
e1 Dyeing [‘dye’] [‘electricity’] [‘1’] {‘dye’:1 000’,‘electricity’:‘200 000’,
‘product’:‘100’,‘carbon emissions’:‘350 000’}
2022/6/2 10:25
e2 Dyeing [‘dye’] [‘electricity’] [‘2’] {‘dye’:’750’,‘electricity’:‘140 000’,
‘product’:‘80’,‘carbon emissions’:‘250 000’}
2022/6/2 11:43
e3 Weaving [‘yarn’] [‘electricity’] [‘2’] {‘yarn’:’10’,‘electricity’:‘450’,
‘product’:‘8’,‘carbon emissions’:‘6 000’}
2022/6/2 12:32
e91 Dyeing [‘dye’] [‘electricity’] [‘3’] {‘dye’:600’,‘electricity’:‘120 000’,
‘product’:‘70’,‘carbon emissions’:‘249 735’}
2022/6/3 10:15
e92 Spinning [‘fiber’] [‘electricity’] [‘1’] {‘fiber’:’10’,‘electricity’:‘200’,
‘product’:‘9’,‘carbon emissions’:‘3 000’}
2022/6/3 14:29
e93 Weaving [‘yarn’] [‘electricity’] [‘3’] {‘yarn’:’9’,‘electricity’:‘400’,
‘product’:’8’,‘carbon emissions’:‘5 000’}
2022/6/3 11:34

图4

纺织生产的全息流程模型"

表2

不同产品对应的物料和能源碳排放因子"

产品
类型
物料碳排放因子/
(kg CO2e·kg-1)
能源碳排放因子/
(kg CO2e·
(kW·h)-1)
纤维 纱线 漂白剂 染料 热定
形剂
面料 电力
产品1 0.12 0.84 2 5 2 0.2 0.81
产品2 0.018 0.35 1.36 1.5 2.95 0.08 0.81
产品3 0.08 0.85 2 3 3 0.18 0.81

图5

使用OCPM挖掘的全息流程模型"

图6

不同产品的碳足迹"

图7

每种产品不同生产环节的碳排放占比"

图8

每种产品不同物料和能源的碳排放占比"

表3

优化前后的碳排放对比"

产品
类型
碳排放/kg CO2e 下降比
例/%
优化前 优化后 下降量
产品1 387 685.77 310 148.62 77 537.15 20
产品2 172 786.14 155 507.53 17 278.61 10
产品3 313 622.11 250 897.69 62 724.42 20
[1] ZHANG J, QIAN X, FENG J. Review of carbon footprint assessment in textile industry[J]. Ecofeminism and Climate Change, 2020, 1(1): 51-56.
[2] 杜欢政, 刘建成, 陆莎. 双碳目标下纺织产业的绿色创新与发展[J]. 纺织学报, 2022, 43(9): 120-128.
DU Huanzheng, LIU Jiancheng, LU Sha. Green innovation and development of textile industry under dual carbon goals[J]. Journal of Textile Research, 2022, 43(9): 120-128.
[3] TEKIN P, ALICI H, DEMIRDELEN T. A life cycle analysis of a polyester-wool blended fabric and associated carbon emissions in the textile industry[J]. Energies, 2024. DOI: 10.3390/en17020312.
[4] YAN Y, WANG C, DING D, et al. Industrial carbon footprint of several typical Chinese textile fabrics[J]. Acta Ecologica Sinica, 2016, 36(3): 119-125.
[5] WANG C, WANG L, LIU X, et al. Carbon footprint of textile throughout its life cycle: a case study of Chinese polyester-cotton blended shirts[J]. Journal of Cleaner Production, 2015, 108: 464-475.
[6] 邵景峰, 马创涛, 王蕊超, 等. 基于碳排放核算的涤纶低弹丝生产工艺优化[J]. 纺织学报, 2019, 40(2):166-172.
SHAO Jingfeng, MA Chuangtao, WANG Ruichao, et al. Polyester drawn textured yarn production process optimization based on carbon emission accounting[J]. Journal of Textile Research, 2019, 40(2): 166-172.
[7] HE B, DUAN H, YANG W, et al. Decarbonizing polyamide textile production in China: footprints and mitigation pathways from life cycle perspective[J]. Resources, Conservation and Recycling, 2024. DOI: 10.1016/j.resconrec.2024.107705.
[8] PETERSON J L. Petri nets[J]. ACM Computing Surveys (CSUR), 1977, 9(3): 223-252.
[9] SHI J L, FAN S J, WANG Y J, et al. A quantitative analysis method of greenhouse gas emission for mechanical product remanufacturing based on Petri net[J]. Advances in Production Engineering & Management, 2018. DOI: 10.1016/j.resconrec.2024.107705.
[10] MENON R.Investigation of energy management and optimization using penalty based reinforcement learning algorithms for textile industry[C]//2020 international conference on innovative trends in information techno-logy (ICITIIT). Kottayam: IEEE, 2020: 1-8.
[11] VAN DER AALST W. Object-centric process mining: unraveling the fabric of real processes[J]. Mathematics, 2023. DOI: 10.1016/j.resconrec.2024.107705.
[12] VAN DER AALST W, BERTI A. Discovering object-centric Petri nets[J]. Fundamenta Informaticae, 2020, 175(1-4): 1-40.
[13] 吴涛, 李婕, 鲍劲松, 等. 羊毛混纺面料生产流程的碳图谱建模与应用[J]. 纺织学报, 2024, 45(9): 97-105.
WU Tao, LI Jie, BAO Jinsong, et al. Modeling of carbon footprints for producing wool blended fabrics and model applications[J]. Journal of Textile Research, 2024, 45(9): 97-105.
[14] LIU Z, SUN T, YU Y, et al. Near-real-time carbon emission accounting technology toward carbon neutra-lity[J]. Engineering, 2022, 14: 44-51.
[15] GHAHFAROKHI A F, PARK G, BERTI A, et al. OCEL: a standard for object-centric event logs[C]// European Conference on Advances in Databases and Information Systems. Cham: Springer International Publishing, 2021: 169-175.
[16] VAN DER AALST W. Object-centric process mining: an introduction[C]// International Colloquium on Theoretical Aspects of Computing. Cham: Springer International Publishing, 2021: 73-105.
[17] BERTI A, VAN Zelst S, SCHUSTER D. PM4Py: a process mining library for Python[J]. Software Impacts, 2023. DOI: 10.1016/j.simpa.2023.100556.
[18] ADAMS J N, PARK G, VAN DER AALST W. OCPA: a python library for object-centric process analysis[J]. Software Impacts, 2022. DOI: 10.1016/j.simpa.2022.100438.
[1] 吴涛, 李婕, 鲍劲松, 王新厚, 崔鹏. 羊毛混纺面料生产流程的碳图谱建模与应用[J]. 纺织学报, 2024, 45(09): 97-105.
[2] 张建磊, 申攀登, 何琳, 程隆棣. 异质性环境规制对中国纺织服装业碳排放的影响[J]. 纺织学报, 2023, 44(10): 149-156.
[3] 刘宇, 谢汝义, 宋亚伟, 齐元章, 王辉, 房宽峻. 涤/棉交织物一浴法轧染工艺[J]. 纺织学报, 2022, 43(05): 18-25.
[4] 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报, 2022, 43(01): 36-42.
[5] 邵景峰, 石小敏. 基于非支配排序遗传算法的细纱工艺参数优化[J]. 纺织学报, 2022, 43(01): 80-88.
[6] 纪柏林, 王碧佳, 毛志平. 纺织染整领域支撑低碳排放的关键技术[J]. 纺织学报, 2022, 43(01): 113-121.
[7] 殷士勇, 鲍劲松, 唐仕喜, 杨芸. 环锭纺纱信息物理生产系统建模方法[J]. 纺织学报, 2021, 42(02): 65-73.
[8] 邵景峰, 李宁, 蔡再生. 基于模糊多准则的涤纶低弹丝生产工艺参数优化[J]. 纺织学报, 2021, 42(01): 46-52.
[9] 张旭靖, 王立川, 陈雁. 服装缝制生产物料的低碳配送路径优化[J]. 纺织学报, 2020, 41(03): 143-147.
[10] 邵景峰, 马创涛, 王蕊超, 袁玉楼, 王希尧, 牛一凡. 基于碳排放核算的涤纶低弹丝生产工艺优化[J]. 纺织学报, 2019, 40(02): 166-172.
[11] 陈李红 严新锋 丁雪梅 高长春. 基于网络层次分析法的纺织服装产业可持续竞争力评价[J]. 纺织学报, 2018, 39(10): 162-167.
[12] 俞璐 王立川 陈雁. 服装生产过程碳排放量核算[J]. 纺织学报, 2016, 37(4): 160-164.
[13] 俞璐 王立川 陈雁. 服装生产过程碳排放计算模型[J]. 纺织学报, 2016, 37(3): 156-159.
[14] 杨自平, 张建春, 张华, 张晓霞, 高志强. 基于PAS2050规范的大麻纤维产品碳足迹测量分析[J]. 纺织学报, 2012, 33(8): 140-144.
[15] 潘海鹏;柯挺;戴文战. 纺织生产过程温控对象的自调整模糊控制[J]. 纺织学报, 2003, 24(03): 33-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!