纺织学报 ›› 2019, Vol. 40 ›› Issue (12): 109-113.doi: 10.13475/j.fzxb.20181105505

• 服装工程 • 上一篇    下一篇

防火服用蜂窝隔热层的热蓄积性能测评

侯玉莹1, 李小辉1,2()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
  • 收稿日期:2018-11-20 修回日期:2019-08-19 出版日期:2019-12-15 发布日期:2019-12-18
  • 通讯作者: 李小辉
  • 作者简介:侯玉莹(1996—),女,硕士生。主要研究方向为功能防护服装。
  • 基金资助:
    国家自然科学基金资助项目(51703026);中央高校基本科研业务费专项资金资助项目(2232019G-08)

Evaluation of thermal storage performance of honeycomb insulation layer for fireproof clothing

HOU Yuying1, LI Xiaohui1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2018-11-20 Revised:2019-08-19 Online:2019-12-15 Published:2019-12-18
  • Contact: LI Xiaohui

摘要:

为改善火场环境中防火服热蓄积的影响,将蜂窝隔热层应用于防火服中并对其热蓄积性能进行测评。选取当前典型的防火服面料,对蜂窝夹芯的边长、壁厚、芯厚进行设计并制备了21种实验试样,采用热蓄积测试仪器模拟火场环境并记录蜂窝隔热层防火服试样的热暴露时间。探究6种蜂窝孔型的边长、壁厚、芯厚的变化对实验试样热暴露时间的影响。结果表明:采用蜂窝孔型的隔热层其质量最大可减轻64%,热暴露时间最高增加了10 s;随着蜂窝孔型壁厚的增加,热暴露时间也会增加,蜂窝孔型的芯厚与热暴露时间呈正相关,孔型边长与热暴露时间呈负相关。

关键词: 热蓄积, 蜂窝孔型, 防火服, 隔热层, 热防护性能

Abstract:

In order to improve the stored thermal energy of fireproof clothing in the fire environment, the honeycomb insulation layer was applied to the fireproof clothing, and its heat storage performance was evaluated. The current typical fire-fighting clothing fabrics was selected, the side length, wall thickness and core thickness of the honeycomb core were designed, and 21 kinds of experimental samples were prepared. The fire environment was simulated by the stored energy test instrument, and the minimum exposure time(MET) of the experimental samples was recorded. The influences of the length, wall thickness and core thickness of the 6 honeycomb types on MET of the experimental samples were investigated. The results show that the weight of the thermal liner can be reduced by up to 64%, and the MET is increased by up to 10 s. As the wall thickness of the honeycomb hole type increases, the MET also increases. The core thickness is positively correlated with the MET, and the side length of the hole is negatively correlated with the MET.

Key words: stored thermal energy, honeycomb hole type, fireproof clothing, thermal liner, thermal protection performance

中图分类号: 

  • TS941.73

表1

面料试样及其基本性能"

面料
编号
产品名称 颜色 面密度/
(g·m-2)
厚度/
mm
透气率/
(L·m-2·s-1)
A Nomex?IIIA 藏青色 211.6 0.5 206.57
B T-70/PTFE 浅黄+白色 106.1 0.6 0.84
C1 I-70毡Nomex 浅黄 72.3 0.6 1 658.02
C2 I-120毡Nomex 浅黄 128.4 1.0 1 087.65
C3 I-150毡Nomex 浅灰 151.3 1.5 988.50
D 阻燃粘胶 浅灰 125.6 0.3 1 262.45

图1

防火服织物蜂窝夹芯结构示意图"

表2

蜂窝孔型结构参数"

蜂窝孔型
结构编号
孔型边长/
mm
壁厚/
mm
质量减轻
百分比/%
E1 实心 实心
E2 3 2.6 44.2
E3 3 5.2 25.1
E4 6 2.6 64.2
E5 6 5.2 44.4
E6 9 5.2 56.2
E7 9 7.8 44.4

表3

实验方案设计"

实验编号 外层 防水透气层 隔热层 舒适层 孔型方案
1 A B C1 D E1
2 A B C1 D E2
3 A B C1 D E3
4 A B C1 D E4
5 A B C1 D E5
6 A B C1 D E6
7 A B C1 D E7
8 A B C2 D E1
9 A B C2 D E2
10 A B C2 D E3
11 A B C2 D E4
12 A B C2 D E5
13 A B C2 D E6
14 A B C2 D E7
15 A B C3 D E1
16 A B C3 D E2
17 A B C3 D E3
18 A B C3 D E4
19 A B C3 D E5
20 A B C3 D E6
21 A B C3 D E7

图2

热蓄积测试装置"

表4

蜂窝隔热层面密度"

蜂窝孔型结构编号 C1 C2 C3
E1 72.3 128.4 151.3
E2 40.5 71.7 84.6
E3 54.2 96.0 113.2
E4 26.0 46.1 54.4
E5 40.1 71.0 83.8
E6 31.8 56.3 66.4
E7 40.5 71.7 84.6

表5

边长与热暴露时间相关性"

指标 类别 边长 热暴露时间
Pearson相关性边长 1 -0.993
边长 显著性(双尾) 0.075
N 3 3
Pearson相关性 -0.993 1
热暴露时间 显著性(双尾) 0.075
N 3 3

图3

不同孔型边长时不同壁厚的最小热暴露时间"

图4

不同芯厚面料组合的最小热暴露时间"

表6

芯厚与热暴露时间相关性"

指标 类别 芯厚 热暴露时间
Pearson相关性 1 0.959
芯厚 显著性(双尾) 0.182
N 3 3
Pearson相关性 0.959 1
热暴露时间 显著性(双尾) 0.182
N 3 3
[1] DEUSER L, BARKER R, DEATON A S, et al. Interlaboratory study of ASTM F2731, standard test method for measuring the transmitted and stored energy of firefighter protective clothing systems[J]. Journal of ASTM International, 2012,9(3):188-201.
[2] 祝文婷, 刘茜. 相变纺织材料的研究进展及其评价方法[J]. 时尚设计与工程, 2016(2):38-48.
ZHU Wenting, LIU Qian. Research and evaluation methods for the phase change of textile materials[J]. Fashion Design and Engineering, 2016 (2):38-48.
[3] 张芳, 范艳苹, 陆少锋, 等. 相变微胶囊在纺织品上的研究进展[J]. 针织工业, 2018(7):42-45.
ZHANG Fang, FAN Yanping, LU Shaofeng, et al. Research progress of phase change microencapsulated materials in textile industry[J]. Knitting Industries, 2018(7):42-45.
[4] GENG Xiaoye, LI Wei, WANG Yu, et al. Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing[J]. Applied Energy, 2018(2):281-294.
[5] SONG G, CAO W, GHOLAMREZA F. Analyzing stored thermal and thermal protective performance[J]. Textile Research Journal, 2011,81(11):1124-1138.
[6] ENI E U. Developing test procedures for measuring stored thermal energy in firefighter protective cloth-ing[D]. North Carolina: North Carolina State University, 2005: 1-53.
[7] HE Jiazhen, LU Yehu, CHEN Yan, et al. Investigation of the thermal hazardous effect of protective clothingcaused by stored energy discharge[J]. Journal of Hazardous Materials, 2017,338:76-84.
doi: 10.1016/j.jhazmat.2017.05.012 pmid: 28531661
[8] SU Yun, HE Jiazhen, LI Jun. Modeling the transmitted and stored energy in multilayer protective clothing under low-level radiant exposure[J]. Applied Thermal Engineering, 2016 ( 93):1295-1303.
[9] BARKER L, DEATON S, ROSS A. Heat transmission and thermal energy storage in firefighter turnout suit materials[J]. Fire Technology, 2011,47(3):549-563.
[10] 张梦莹, 苗勇, 李俊. 防火服热蓄积的影响因素及其测评方法[J]. 纺织学报, 2016,37(6):171-176.
ZHANG Mengying, MIAO Yong, LI Jun. Influence factors and evaluation methods of stored thermal energy in firefighters protective clothing[J]. Journal of Textile Research, 2016,37(6):171-176.
[1] 翟丽娜, 李俊, 杨允出. 热防护服装测评用传感器的发展及其研究现状[J]. 纺织学报, 2020, 41(10): 188-196.
[2] 何佳臻, 薛萧昱, 王敏, 李俊. 基于最大衰减因子模型的服装热防护性能预测[J]. 纺织学报, 2020, 41(06): 112-117.
[3] 高珊, 卢业虎, 张德锁, 吴雷, 王来力. 石墨烯气凝胶复合防火织物的热防护性能[J]. 纺织学报, 2020, 41(04): 117-122.
[4] 邱浩, 苏云, 王云仪. 蒸汽暴露条件对织物热防护性能的影响 [J]. 纺织学报, 2020, 41(01): 118-123.
[5] 胡贝贝, 杜菲菲, 李小辉. 消防服用隔热层孔型结构优化与测评[J]. 纺织学报, 2019, 40(11): 140-144.
[6] 杜菲菲, 李小辉, 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019, 40(03): 133-138.
[7] 苏云, 杨杰, 李睿, 宋国文, 李俊, 张向辉. 热辐射暴露下消防员的生理反应及皮肤烧伤预测[J]. 纺织学报, 2019, 40(02): 147-152.
[8] 翟胜男 陈太球 蒋春燕 傅佳佳 王鸿博. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(08): 100-104.
[9] 卢琳珍 徐定华 徐映红. 应用三层热防护服热传递改进模型的皮肤烧伤度预测[J]. 纺织学报, 2018, 39(01): 111-118.
[10] 何华玲 于志财 张健飞 宋国文. 含水率对消防服用多层织物系统热蓄积的影响[J]. 纺织学报, 2017, 38(08): 108-113.
[11] 赖军 张梦莹 张华 李俊. 消防服衣下空气层的作用与测定方法研究进展[J]. 纺织学报, 2017, 38(06): 151-156.
[12] 苏云 李俊. 火灾环境下防水透气层对消防服热湿防护性能的影响[J]. 纺织学报, 2017, 38(02): 152-158.
[13] 张梦莹 苗勇 李俊. 防火服热蓄积的影响因素及其测评方法[J]. 纺织学报, 2016, 37(06): 171-176.
[14] 苗勇 李俊. 减少热蓄积的消防服开发及其性能评价[J]. 纺织学报, 2016, 37(01): 111-115.
[15] 马春杰 崔志英 . 光湿复合老化对消防服用织物性能的影响[J]. 纺织学报, 2015, 36(09): 82-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!