纺织学报 ›› 2020, Vol. 41 ›› Issue (02): 95-102.doi: 10.13475/j.fzxb.20190504808

• 染整与化学品 • 上一篇    下一篇

TiO2/MIL-88B(Fe)/聚丙烯复合熔喷非织造材料的制备及其性能

刘禹豪, 孙辉, 王捷琪, 于斌()   

  1. 浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310000
  • 收稿日期:2019-05-21 修回日期:2019-11-21 出版日期:2020-02-15 发布日期:2020-02-21
  • 通讯作者: 于斌
  • 作者简介:刘禹豪(1995—),男,硕士生。主要研究方向为非织造材料改性。
  • 基金资助:
    浙江省自然科学基金项目(LY19E030011)

Preparation of TiO2/MIL-88B(Fe)/polypropylene composite melt-blown nonwovens and study on dye degradation properties

LIU Yuhao, SUN Hui, WANG Jieqi, YU Bin()   

  1. College of Textile Science and Engineering & International Institute of Silk, Zhejiang Sci-Tech University,Hangzhou, Zhejiang 310000, China
  • Received:2019-05-21 Revised:2019-11-21 Online:2020-02-15 Published:2020-02-21
  • Contact: YU Bin

摘要:

为使聚丙烯(PP)熔喷非织造材料功能化,扩大其在水处理方面的应用,以2,4-对苯二甲酸、六水合三氯化铁、纳米氧化钛为原料,PP熔喷非织造材料为基材,首先通过浸渍工艺预处理基底材料,再通过溶剂热法在PP熔喷非织造材料基材上负载金属有机框架材料TiO2/MIL-88B(Fe),制备了TiO2/MIL-88B(Fe)/PP复合熔喷非织造材料。借助红外光谱、X射线衍射及孔径分析对TiO2/MIL-88B(Fe)/PP复合熔喷非织造材料的结构与性能进行了表征。结果表明TiO2/MIL-88B(Fe)成功负载在PP熔喷非织造材料表面。在可见光照射条件下,TiO2/MIL-88B(Fe)/PP复合熔喷非织造材料对甲基蓝、酸性橙7及酸性红73这3种染料的降解率均达到80%以上,其中对甲基蓝的降解率可达86%,对较难降解的罗丹明B的降解率也达到了59%。在重复使用5次后,复合熔喷非织造材料对甲基蓝降解率均在70%以上,性能较稳定。

关键词: 聚丙烯, 熔喷非织造材料, 金属骨架化合物, 类芬顿体系, 有机染料降解

Abstract:

In order to functionalize polypropylene (PP) melt-blown nonwovens and expand their application on water treatment, TiO2/MIL-88B(Fe)/PP composite melt-blown nonwovens were prepared by use of 2,4-terephthalic acid, ferric chloride hexahydrate and nano-titanium oxide as raw materials and PP melt-blown nonwovens as the substrate. PP melt-blown nonwovens was first pretreated by impregnation process. Then, the metal-organic framework TiO2/MIL-88B(Fe) was fixed on the surface of PP melt-blown nonwovens via solvothermal method. The structure and properties of the TiO2/MIL-88B(Fe)/PP composite melt-blown nonwovens were characterized by Fourier transform infrared spectrometer, X-ray diffraction and aperture analyzer. It is indicated that TiO2/MIL-88B (Fe) was successfully loaded on the surface of PP melt-blown nonwovens substrate. Under visible light irradiation, the degradation rates of the TiO2/MIL-88B(Fe)/PP composite melt-blown nonwovens for methyl blue, acid orange 7, acid red 73 are more than 80%, and especially, its degradation rate for methyl blue could reach 86%, the degradation rate of Rhodamine B also reaches 59%. After 5 cycles of tests, the removal rate of methyl blue by composites is above 70%, the catalytic performance is stable.

Key words: polypropylene, melt-blown nonwoven material, metal skeleton compound, Fenton-like system, degradation of organic dye

中图分类号: 

  • TB430

图1

熔喷非织造材料表面形貌"

图2

复合熔喷非织造材料纤维表面图(×3 000)"

表1

复合熔喷非织造材料纤维表面元素含量"

元素 质量百分数 原子百分数
C 76.90 82.79
O 20.51 16.56
Na 0.11 0.06
S 0.10 0.04
Ti 1.23 0.34
Fe 1.15 0.27

图3

PP熔喷非织造材料负载MOFs前后对比"

图4

PP熔喷非织造材料负载MOFs前后对比"

图5

熔喷非织造材料的孔径分布"

图6

甲基蓝去除性能"

图7

不同条件下TiO2/MIL-88B(Fe)/PP复合熔喷非织造材料的染料降解效果"

图8

复合熔喷非织造材料的重复使用"

图9

TiO2/MIL-88B(Fe)/PP复合熔喷非织造材料的重复使用扫描电镜照片(×5 000)"

[1] 石波, 安树林. 熔喷法聚丙烯非织造布滤材[J]. 天津纺织科技, 2003,41(1):25-28.
SHI Bo, AN Shulin. Meltblown polypropylene non-woven fabric filter[J]. Tianjin Textile Science Technology, 2003,41(1):25-28.
[2] 王璐, 丁笑君, 夏馨, 等. SiO2芳纶非织造布复合织物的防护功能[J]. 纺织学报, 2019,40(10):79-84.
WANG Lu, DING Xiaojun, XIA Xin, et al. Protective function of SiO2 aerogel hybrid/aramid nonwovens fabric[J]. Journal of Textile Research, 2019,40(10):79-84.
[3] TOMASZEWSKA Justyna, JAKUBIAK Szymon, MICHALSKI Jakub. A polypropylene cartridge filter with hematite nanoparticles for solid particles retention and arsenic removal[J]. Applied Surface Science, 2016,366:529-534.
doi: 10.1016/j.apsusc.2016.01.044
[4] 程博闻, 康卫民, 焦晓宁. 复合驻极体聚丙烯熔喷非织造布的研究[J]. 纺织学报, 2005,26(5):8-10.
CHENG Boweng, KANG Weimin, JIAO Xiaoning. Study on melt-blown polypropylene composite fabric containing electret[J]. Journal of Textile Research, 2005,26(5):8-10.
[5] 唐丽华, 任婉婷, 李鑫, 等. 低温等离子体亲水改性聚丙烯熔喷非织造布[J]. 纺织学报, 2010,31(4):30-34.
TANG Lihua, REN Wanting, LI Xin, et al. Hydrophilic modification of PP nonwoven fabric by cold plasma[J]. Journal of Textile Research, 2010,31(4):30-34.
[6] 崔晓萍, 朱光明, 杨健. 聚丙烯熔喷非织造布的接枝改性研究[J]. 山西大学学报(自然科学版), 2005,28(2):182-185.
CUI Xiaoping, ZHU Guangming, YANG Jian. Study on graft modification of polypropylene melt-blown nonwovens[J]. Journal of Shanxi University(Nature Science Edition), 2005,28(2):182-185.
[7] MOLEFE L Y, MUSYOKA N M, REN J, et al. Synjournal of porous polymer-based metal-organic frameworks monolithic hybrid composite for hydrogen storage application[J]. Journal of Materials Science, 2019,54(9):7078-7086.
[8] PAI K N, BABOOLAL J D, SHARP D A, et al. Evaluation of diamine-appended metal-organic frameworks for post-combustion CO2 capture by vacuum swing adsorption[J]. Separation and Purification Technology, 2019,211:540-550.
[9] ZORNOZA B, MARTINEZ-JOARISTI A, SERRA-CRESPO P, et al. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures[J]. Chemical Communications, 2011,47(33):9522.
pmid: 21769350
[10] WANG C C, LI J R, LV X L, et al. Photocatalytic organic pollutants degradation in metal-organic frameworks[J]. Energy & Environmental Science, 2014,7(9):2831.
[11] ZENG L, GUO X, HE C, et al. Metal-organic frameworks: versatile materials for heterogeneous photocatalysis[J]. ACS Catalysis, 2016,6(11):7935-7947.
[12] JU Y, YU Y, WANG X, et al. Environmental application of millimetre-scale sponge iron (s-Fe0) particles (Ⅳ): new insights into visible light photo-fenton-like process with optimum dosage of H2O2 and RhB photosensitizers[J]. Journal of Hazardous Materials, 2016,323(B):611-620.
doi: 10.1016/j.jhazmat.2016.09.064
[13] CHANDRA R, MUKHOPADHYAY S, NATH M. TiO2@ZIF-8: a novel approach of modifying micro environment for enhanced photo-catalytic dye degradation and high usability of TiO2 nanoparticles[J]. Materials Letters, 2016,164, 571-574.
[14] ZHAO X X, ZHANG Y, WEN P, et al. NH2-MIL-125(Ti)/TiO2 composites as superior visible-light photocatalysts for selective oxidation of cyclohexane[J]. Molecular Catalysis, 2018,452:175-183.
doi: 10.1016/j.mcat.2018.04.004
[15] SUNG C, HEARN K, REID D K, et al. A Comparison of thermal transitions in dip- and spray-assisted layer-by-layer assemblies[J]. Langmuir, 2013,29(28):8907-8913.
doi: 10.1021/la4016965 pmid: 23789626
[16] KEVIN C K, KATHARINE F, PAULA T H, et al. Metal ion reactive thin films using spray electrostatic LbL assembly[J]. Journal of Physical Chemistry B, 2008,112(46):14453-14460.
[17] 黄景莹, 吴海波. 热处理对聚丙烯熔喷非织造布性能的影响[J]. 产业用纺织品, 2012,30(3):29-32.
HUANG Jingying, WU Haibo. Effect of heat treatment on properties of polypropylene melt-blown nonwoven fabric[J]. Technical Textiles, 2012,30(3):29-32.
[18] LI Yuanyuan, JIANG Jun, FANG Yu. TiO2 nanoparticles anchored onto the metal-organic framework NH2 MIL-88B(Fe) as an adsorptive photocatalyst with enhanced fenton-like degradation of organic pollutants under visible light irradiation[J]. ACS Sustainable Chem Eng, 2018,6:16186-16197.
[19] HU C J, HUANG D L, ZENG G M. et al. The combination of Fenton process and Phanerochaete chrysosporium for the removal of bisphenol a in river sediments: mechanism related to extracellular enzyme, organic acid and iron[J]. Chemical Engineering Journal, 2018,338:432-439.
[20] BRILLAS E, SIRE S I, OTURAN M A. Electro-fenton process and related electrochemical technologies based on fenton's reaction chemistry[J]. Chemical Reviews, 2009,109(12):6570-6631.
doi: 10.1021/cr900136g pmid: 19839579
[1] 张雪飞, 李婷婷, 许炳铨, 林佳弘, 楼静文. 用低温界面聚合法制备多功能核壳结构热电织物[J]. 纺织学报, 2021, 42(02): 174-179.
[2] 蔡露, 康佳良, 吕存, 何雪梅. 自交联氟化聚丙烯酸酯乳液的制备及其应用性能[J]. 纺织学报, 2021, 42(02): 161-167.
[3] 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/ 羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40.
[4] 夏云, 吕汪洋, 陈文兴. 模拟太阳光下金属酞菁/多壁碳纳米管催化降解染料[J]. 纺织学报, 2020, 41(12): 94-101.
[5] 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33.
[6] 乔燕莎, 王茜, 李彦, 桑佳雯, 王璐. 聚多巴胺涂层聚丙烯疝气补片的制备及其体外炎性反应[J]. 纺织学报, 2020, 41(09): 162-166.
[7] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[8] 朱清, 徐丹丹, 潘园歌, 王成龙, 郑今欢. 水性聚丙烯酸酯对涂层商标织物图案打印效果的影响[J]. 纺织学报, 2020, 41(08): 55-62.
[9] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[10] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[11] 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2/聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29.
[12] 刘艳春, 白刚. 小檗碱在聚丙烯腈/醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[13] 万雨彩, 刘迎, 王旭, 易志兵, 刘轲, 王栋. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41(04): 15-20.
[14] 赵亚奇, 郭雯静, 杜玲枝, 赵振新, 赵海鹏. 自由基引发剂制备高相对分子质量聚丙烯腈研究进展[J]. 纺织学报, 2020, 41(04): 174-180.
[15] 吴横, 金欣, 王闻宇, 朱正涛, 林童, 牛家嵘. 聚丙烯腈/硝酸钠纳米纤维膜的制备及其压电性能[J]. 纺织学报, 2020, 41(03): 26-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!